issue_comments
1 row where issue = 538809911 and user = 10194086 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- applying ufunc over lon and lat · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
566454958 | https://github.com/pydata/xarray/issues/3632#issuecomment-566454958 | https://api.github.com/repos/pydata/xarray/issues/3632 | MDEyOklzc3VlQ29tbWVudDU2NjQ1NDk1OA== | mathause 10194086 | 2019-12-17T09:19:50Z | 2019-12-17T09:19:50Z | MEMBER | Maybe the code here does something similar to what you want: ``` python import numpy as np import xarray as xr from xarray.core import missing as xrmissing data = [0, -2, -2, -2, 0, -2, -2, 0] da = xr.DataArray(data, coords=dict(time=np.arange(8)), dims=["time"]) dlt = da < 0 xrmissing._get_nan_block_lengths(dlt.where(~ dlt), "time", dlt.time) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
applying ufunc over lon and lat 538809911 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1