issue_comments
1 row where issue = 538092307 and user = 4160723 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Documentation for injected methods · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 618203379 | https://github.com/pydata/xarray/issues/3625#issuecomment-618203379 | https://api.github.com/repos/pydata/xarray/issues/3625 | MDEyOklzc3VlQ29tbWVudDYxODIwMzM3OQ== | benbovy 4160723 | 2020-04-23T06:21:45Z | 2020-04-23T06:21:45Z | MEMBER |
I re-used pandas templates for xarray accessors here: https://github.com/benbovy/xarray-simlab/blob/45359e99cbf6341464b02cb937618c051a58a31c/doc/conf.py#L233 It works pretty well: https://xarray-simlab.readthedocs.io/en/latest/api.html#dataset-xsimlab-xarray-accessor (Sorry I could have shared this sooner, I missed the issues here) |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Documentation for injected methods 538092307 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1