issue_comments
2 rows where issue = 528884925 and user = 1197350 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- map_blocks output inference problems · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 558764219 | https://github.com/pydata/xarray/issues/3575#issuecomment-558764219 | https://api.github.com/repos/pydata/xarray/issues/3575 | MDEyOklzc3VlQ29tbWVudDU1ODc2NDIxOQ== | rabernat 1197350 | 2019-11-26T18:40:03Z | 2019-11-26T18:40:03Z | MEMBER | Right that’s what I did too. But it’s a hack! Sent from my iPhone
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
map_blocks output inference problems 528884925 | |
| 558747568 | https://github.com/pydata/xarray/issues/3575#issuecomment-558747568 | https://api.github.com/repos/pydata/xarray/issues/3575 | MDEyOklzc3VlQ29tbWVudDU1ODc0NzU2OA== | rabernat 1197350 | 2019-11-26T17:57:09Z | 2019-11-26T17:57:09Z | MEMBER | p.s. In this case the default assumption, that the output would be the same shape and dtype as the input, would have been fine. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
map_blocks output inference problems 528884925 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1