issue_comments
1 row where issue = 522935511 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- 2x~5x speed up for isel() in most cases · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
554123807 | https://github.com/pydata/xarray/pull/3533#issuecomment-554123807 | https://api.github.com/repos/pydata/xarray/issues/3533 | MDEyOklzc3VlQ29tbWVudDU1NDEyMzgwNw== | shoyer 1217238 | 2019-11-14T23:01:41Z | 2019-11-14T23:01:41Z | MEMBER | Dataset.indexes is currently equivalent to just calling to_index() on each appropriate variable. But eventually we want to separate the notion of an index from variables with names matching dimensions, and this is a prerequisite for that. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
2x~5x speed up for isel() in most cases 522935511 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1