home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 499477368 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 2

  • shoyer 2
  • dcherian 1

issue 1

  • assert_equal and dask · 3 ✖

author_association 1

  • MEMBER 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
560115162 https://github.com/pydata/xarray/issues/3350#issuecomment-560115162 https://api.github.com/repos/pydata/xarray/issues/3350 MDEyOklzc3VlQ29tbWVudDU2MDExNTE2Mg== dcherian 2448579 2019-12-01T14:33:08Z 2019-12-01T14:33:08Z MEMBER

The size zero dimension is a give-away that the problem has something to do with dask's _meta propagation.

I think the size 0 results from chunk(). With chunk(2) other weird errors come up:

TypeError: tuple indices must be integers or slices, not tuple

We were specifying a name for the chunked array in Dataset.chunk but this name was independent of chunk sizes i.e. ds.chunk() & ds.chunk(2) have the same names which ends up confusing dask (I think). #3584 fixes this by providing chunks as an input to tokenize. I also needed to add __dask_tokenize__ to ReprObject so that names were reproducible after going through a to_temp_dataset transformation

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  assert_equal and dask 499477368
535990462 https://github.com/pydata/xarray/issues/3350#issuecomment-535990462 https://api.github.com/repos/pydata/xarray/issues/3350 MDEyOklzc3VlQ29tbWVudDUzNTk5MDQ2Mg== shoyer 1217238 2019-09-27T15:35:55Z 2019-09-27T15:35:55Z MEMBER

Interestingly, it looks like the difference comes down to whether we chunk DataArrays or Datasets. The former produces graphs with fixed (reproducible) keys, the later doesn't: ``` In [57]: dict(ds.chunk().x.data.dask) Out[57]: {('xarray-x-a46bb46a12a44073da484c1311d00dec', 0): array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])}

In [58]: dict(ds.chunk().x.data.dask) Out[58]: {('xarray-x-a46bb46a12a44073da484c1311d00dec', 0): array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])}

In [59]: dict(ds.x.chunk().data.dask) Out[59]: {('xarray-<this-array>-d75d5cc0f0ce1b56590d80702339c0f0', 0): array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])}

In [60]: dict(ds.x.chunk().data.dask) Out[60]: {('xarray-<this-array>-0f78e51941cfb0e25d41ac24ef330a50', 0): array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])} ```

But clearly this should work either way. The size zero dimension is a give-away that the problem has something to do with dask's _meta propagation.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  assert_equal and dask 499477368
535987790 https://github.com/pydata/xarray/issues/3350#issuecomment-535987790 https://api.github.com/repos/pydata/xarray/issues/3350 MDEyOklzc3VlQ29tbWVudDUzNTk4Nzc5MA== shoyer 1217238 2019-09-27T15:28:41Z 2019-09-27T15:28:41Z MEMBER

Here's a slightly simpler case: ``` In [28]: ds = xr.Dataset({'x': (('y',), np.zeros(10))})

In [29]: (ds.chunk().isnull() & ds.chunk(5).isnull()).compute() ValueError: operands could not be broadcast together with shapes (0,) (5,) ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  assert_equal and dask 499477368

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 13.26ms · About: xarray-datasette