issue_comments
1 row where issue = 467767771 and user = 8419157 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- adding stack_all · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
526635815 | https://github.com/pydata/xarray/pull/3115#issuecomment-526635815 | https://api.github.com/repos/pydata/xarray/issues/3115 | MDEyOklzc3VlQ29tbWVudDUyNjYzNTgxNQ== | DancingQuanta 8419157 | 2019-08-30T15:02:45Z | 2019-08-30T15:02:45Z | NONE | Would it be possible to add exclude_dims? I have a use case where I wanted to apply a function (for example fitting) along a dimension. I programmatically create a list of dimensions to stack to create 2D dataset. Then I loop over the stacked dimension and apply the function to last dimension. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
adding stack_all 467767771 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1