home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 46750605 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 2

  • shoyer 2
  • andreas-h 1

author_association 2

  • MEMBER 2
  • CONTRIBUTOR 1

issue 1

  • DataArray computations should handle missing values correctly · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
76900161 https://github.com/pydata/xarray/issues/265#issuecomment-76900161 https://api.github.com/repos/pydata/xarray/issues/265 MDEyOklzc3VlQ29tbWVudDc2OTAwMTYx shoyer 1217238 2015-03-03T07:38:29Z 2015-03-03T07:38:29Z MEMBER

Note: this is fixed in the newly released v0.4.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray computations should handle missing values correctly 46750605
60410597 https://github.com/pydata/xarray/issues/265#issuecomment-60410597 https://api.github.com/repos/pydata/xarray/issues/265 MDEyOklzc3VlQ29tbWVudDYwNDEwNTk3 andreas-h 358378 2014-10-24T16:17:26Z 2014-10-24T16:17:26Z CONTRIBUTOR

Thanks!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray computations should handle missing values correctly 46750605
60410236 https://github.com/pydata/xarray/issues/265#issuecomment-60410236 https://api.github.com/repos/pydata/xarray/issues/265 MDEyOklzc3VlQ29tbWVudDYwNDEwMjM2 shoyer 1217238 2014-10-24T16:14:49Z 2014-10-24T16:14:49Z MEMBER

See the example of using reduce and the warning here: http://xray.readthedocs.org/en/stable/computation.html#aggregation

I do want to enable missing value computations by default, but haven't gotten around to it yet. Possibly in v0.4?

In particular, one thing I wanted was fast missing value aggregation when aggregating simultaneously over multiple dimensions at once. This is now possible with Numbagg, but wasn't with Bottleneck (both are significantly faster than pure Numpy).

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray computations should handle missing values correctly 46750605

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 12.21ms · About: xarray-datasette