issue_comments
8 rows where issue = 427644858 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- WHERE function, problems with memory operations? · 8 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1094070525 | https://github.com/pydata/xarray/issues/2861#issuecomment-1094070525 | https://api.github.com/repos/pydata/xarray/issues/2861 | IC_kwDOAMm_X85BNjD9 | max-sixty 5635139 | 2022-04-09T15:41:49Z | 2022-04-09T15:41:49Z | MEMBER | Closing, please reopen if still an issue |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 | |
478750808 | https://github.com/pydata/xarray/issues/2861#issuecomment-478750808 | https://api.github.com/repos/pydata/xarray/issues/2861 | MDEyOklzc3VlQ29tbWVudDQ3ODc1MDgwOA== | shoyer 1217238 | 2019-04-01T21:14:56Z | 2019-04-01T21:14:56Z | MEMBER | The usual recommendation is to align all of your separate datasets onto the same grid before combining them. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 | |
478570138 | https://github.com/pydata/xarray/issues/2861#issuecomment-478570138 | https://api.github.com/repos/pydata/xarray/issues/2861 | MDEyOklzc3VlQ29tbWVudDQ3ODU3MDEzOA== | fmaussion 10050469 | 2019-04-01T13:03:34Z | 2019-04-01T13:03:34Z | MEMBER | Thanks, I could download them. Can you tell us what the problem with these files is, that we might have to solve in xarray? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 | |
478562188 | https://github.com/pydata/xarray/issues/2861#issuecomment-478562188 | https://api.github.com/repos/pydata/xarray/issues/2861 | MDEyOklzc3VlQ29tbWVudDQ3ODU2MjE4OA== | rpnaut 30219501 | 2019-04-01T12:39:17Z | 2019-04-01T12:39:17Z | NONE | I upload the two 'DSfile_ref' and 'DSfile_proof' to the following address: wget -r -H -N --cut-dirs=3 --include-directories="/v1/" "https://swiftbrowser.dkrz.de/public/dkrz_c0725fe8741c474b97f291aac57f268f/GregorMoeller/?show_all" |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 | |
478560102 | https://github.com/pydata/xarray/issues/2861#issuecomment-478560102 | https://api.github.com/repos/pydata/xarray/issues/2861 | MDEyOklzc3VlQ29tbWVudDQ3ODU2MDEwMg== | rpnaut 30219501 | 2019-04-01T12:32:31Z | 2019-04-01T12:32:31Z | NONE | The xarray coordinates-aware philosophy is nice to prevent from doing nothing useful. I have learned that also the 'data types' of the coordinates have to be identical, i.e. do not try to compare datasets with float32 coordinates and with float64 coordinates. Therefore, I was already educated by the Xarray's. To provide you with an code example would mean that I have to extract all the steps done in the "BigScript" and the related files. It would mess up this feed here. However, you have asked so I try. ``` open and squeezing (for consistency between datasets)self.DSref = xarray.open_dataset(DSfile_ref) self.DSproof = xarray.open_dataset(DSfile_proof) self.DSref = self.DSref.squeeze(); self.DSproof = self.DSproof.squeeze() harmonize grids (the coordinates belonging together where copied from DSref to DSproofself.DSproof = self.MetricCalcProg.HarmonizeHoriGrid(dsetref=self.DSref, \ dsetmod=self.DSproof,posdimnames=self.cfggeneral.PossibleDimNames, \ varnsref=self.varns_ref,varnsmod=self.varns_proof) self.DSproof, self.DSref = self.MetricCalcProg.HarmonizeVertGrid(dsetref=self.DSref, \ dsetmod=self.DSproof,posdimnames=self.cfggeneral.PossibleDimNames, \ varnsref=self.varns_ref,varnsmod=self.varns_proof) self.DSproof, self.DSref = self.MetricCalcProg.HarmonizeTempGrid(dsetref=self.DSref, \ dsetmod=self.DSproof,posdimnames=self.cfggeneral.PossibleDimNames,varnsref=self.varns_ref, \ varnsmod=self.varns_proof,unifreqme=self.cfgdatamining["target_EvalFrequency"]["method"]) to compute linear correlation, dataset A and B have to have equal sample sizesself.DSproof = self.DSproof[varnsproof].where(self.DSref[varnsref].notnull().data).to_dataset( \ name=varnsproof) self.DSref = self.DSref[varnsref].where(self.DSproof[varnsproof].notnull().data).to_dataset( \ name=varnsref) ``` The methods for harmonization of the grids is defined as follows. Do not understand me wrong, but I have to deal with different datasets using different data types and variable names. I have to make the height-coordinate of dataset A consistent to the height-coordinate of dataset B (also the name). I would really like to have some tolerance options for making DataA-DataB. ``` def HarmonizeHoriGrid(self,dsetref=None,dsetmod=None,posdimnames=None,varnsref=None,varnsmod=None): """ Copy all the hor. coordinates from a reference-DS to the model dataset (needed due to inconsistencies in dtype, ..., i.e. small deviations) return model dataset but with harmonized horizontal grid; prone to errors because the check of coordinates has to be done for each variable; (e.g. the model contains WSS(lon1,lat1) and the obs has WSS(lon,lat)) --> however that should be harmonized by the cdo's interpolation) """
def HarmonizeTempGrid(self,dsetref=None,dsetmod=None,posdimnames=None,varnsref=None,varnsmod=None,unifreqme=None): """ Copy the values of the time coordinate from a reference-DS to the model dataset (needed due to inconsistencies in dtype, ...); return model dataset but with harmonized horizontal grid; the input datasets are already opened netcdf-files as xarray-datasets; """ self.logger.debug(" Harmonization of temporal grids prior evaluation.") DimInfref = self.FindDimensionsOfVariables(datafile=None,dataset=dsetref,varnamelist=varnsref) DimInfmod = self.FindDimensionsOfVariables(datafile=None,dataset=dsetmod,varnamelist=varnsmod) dim_tref = GenUti.SplitMetaDim(DimInfref,mode='temporal',PossibleDimDict=posdimnames) dim_tmod = GenUti.SplitMetaDim(DimInfmod,mode='temporal',PossibleDimDict=posdimnames) # for varmod,varref in zip(varnsmod,varnsref): if varref in dim_tref.keys() and varmod in dim_tmod.keys(): for dimes in dim_tref[varref]: if dimes in dim_tmod[varmod]: # helpstr=" Found for the variable "+varref+" the temp. dimension "+ \ dimes+" in reference dataset and an equaivalent in dataset to evaluate: "+ \ varmod+","+dimes+". -> Make datatype consistent depending on unifyfreqmethod"+\ unifreqme if unifreqme=="reselect": self.logger.debug(helpstr) timediff = (np.max(dsetmod[dimes].data-dsetref[dimes].data)) timediff = timediff / np.timedelta64(1,'s') if np.abs(int(timediff)) > 1: self.logger.warning(" The two datasets do not share the same "+\ "time-axis. Maximum difference is "+str(timediff)+' seconds') dsetmod[dimes].data = dsetref[dimes].data elif unifreqme=="resample" and (np.size(dsetref[dimes]) != np.size(dsetmod[dimes])): self.logger.debug(helpstr) inters = pandas.to_datetime(dsetref[dimes].data) inters = inters.intersection(pandas.to_datetime(dsetmod[dimes].data)) dsetmod = dsetmod.sel(time=inters,method='nearest') dsetref = dsetref.sel(time=inters,method='nearest') timediff = (np.max(dsetmod[dimes].data-dsetref[dimes].data)) timediff = timediff / np.timedelta64(1,'s') if np.abs(int(timediff)) > 1: self.logger.warning(" The two harmonized datasets still do not "+\ " share time axis. Max diff is "+str(timediff)+' seconds') dsetmod[dimes].data = dsetref[dimes].data else: self.logger.debug(" No harmonization needed here.") # return the model dataset with harmonized dimensions return dsetmod, dsetref def HarmonizeVertGrid(self,dsetref=None,dsetmod=None,posdimnames=None,varnsref=None,varnsmod=None): """ Adapt the height coordinate from a reference-DS to the model dataset (needed due to different dim names) return model and reference dataset but with harmonized horizontal grid; the input datasets are already opened netcdf-files as xarray-datasets""" self.logger.debug(" Harmonization of vertical grids prior evaluation.") DimInfref = self.FindDimensionsOfVariables(datafile=None,dataset=dsetref,varnamelist=varnsref); DimInfmod = self.FindDimensionsOfVariables(datafile=None,dataset=dsetmod,varnamelist=varnsmod); dim_zref = GenUti.SplitMetaDim(DimInfref,mode='vertical',PossibleDimDict=posdimnames) dim_zmod = GenUti.SplitMetaDim(DimInfmod,mode='vertical',PossibleDimDict=posdimnames) for varref,varmod in zip(varnsref,varnsmod): if (dim_zref[varref] and dim_zmod[varmod]): self.logger.debug(" here we have to modify vert. coord. of "+varref+ " "+varmod) if len(dim_zref[varref])==1 and len(dim_zmod[varmod])==1: dsetmod = dsetmod.rename({ dim_zmod[varmod][0] : "height_"+varref }) dsetref = dsetref.rename({ dim_zref[varref][0] : "height_"+varref }) else: self.logger.error(" Many vertical dimensions found for the variable "+varref+" or "+varmod) self.logger.error(dsetmod[varref]) self.logger.error(dsetmod[varmod]) exit(); else: self.logger.debug(" No vertical dimensions found for the variable "+varref+" or "+varmod) return dsetmod, dsetref ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 | |
478546784 | https://github.com/pydata/xarray/issues/2861#issuecomment-478546784 | https://api.github.com/repos/pydata/xarray/issues/2861 | MDEyOklzc3VlQ29tbWVudDQ3ODU0Njc4NA== | fmaussion 10050469 | 2019-04-01T11:47:27Z | 2019-04-01T11:47:27Z | MEMBER |
All xarray operations will return xarray objects. And xarray will try to match coordinates wherever possible.
In your example above, they are not. Can you help us to reproduce the error with a Minimal Complete Verifiable Example? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 | |
478545314 | https://github.com/pydata/xarray/issues/2861#issuecomment-478545314 | https://api.github.com/repos/pydata/xarray/issues/2861 | MDEyOklzc3VlQ29tbWVudDQ3ODU0NTMxNA== | rpnaut 30219501 | 2019-04-01T11:42:11Z | 2019-04-01T11:44:39Z | NONE | Dear fmaussion, the '.data' does the trick. Up to now I never thought about that the 'notnull' method is acting on more than only the data itself. That is maybe the reason why the 'where' method behaves strange to me.
However, the coordinates are already mathematically identical before |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 | |
478538543 | https://github.com/pydata/xarray/issues/2861#issuecomment-478538543 | https://api.github.com/repos/pydata/xarray/issues/2861 | MDEyOklzc3VlQ29tbWVudDQ3ODUzODU0Mw== | fmaussion 10050469 | 2019-04-01T11:17:46Z | 2019-04-01T11:19:28Z | MEMBER | xarray is "coordinate aware", i.e. it will try hard to prevent users doing bad things with non matching coordinates (yes, the fact that your If I understand what you want, this should do the trick:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WHERE function, problems with memory operations? 427644858 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 4