issue_comments
1 row where issue = 425320466 and user = 20053498 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Allow grouping by dask variables · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
652898319 | https://github.com/pydata/xarray/issues/2852#issuecomment-652898319 | https://api.github.com/repos/pydata/xarray/issues/2852 | MDEyOklzc3VlQ29tbWVudDY1Mjg5ODMxOQ== | C-H-Simpson 20053498 | 2020-07-02T09:29:32Z | 2020-07-02T09:29:55Z | NONE | I'm going to share a code snippet that might be useful to people reading this issue. I wanted to group my data by month and year, and take the mean for each group. I did not want to use My solution was to use Here is the code: ``` def _grouped_mean( data: np.ndarray, months: np.ndarray, years: np.ndarray) -> np.ndarray: """similar to grouping year_month MultiIndex, but faster.
def _wrapped_grouped_mean(da: xr.DataArray) -> xr.DataArray: """similar to grouping by a year_month MultiIndex, but faster.
``` |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow grouping by dask variables 425320466 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1