issue_comments
4 rows where issue = 399309171 and user = 15742456 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Reshape function works only for numpy array and raise error with xarray variable. · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
455951765 | https://github.com/pydata/xarray/issues/2676#issuecomment-455951765 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTk1MTc2NQ== | ahmedshaaban1 15742456 | 2019-01-21T05:22:34Z | 2019-01-21T05:22:34Z | NONE | @dcherian Thanks a lot. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 | |
455909733 | https://github.com/pydata/xarray/issues/2676#issuecomment-455909733 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTkwOTczMw== | ahmedshaaban1 15742456 | 2019-01-20T22:45:15Z | 2019-01-20T22:45:15Z | NONE | Any idea if Xarray will incorporate more Numpy/Scipy functions in the future. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 | |
455906272 | https://github.com/pydata/xarray/issues/2676#issuecomment-455906272 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTkwNjI3Mg== | ahmedshaaban1 15742456 | 2019-01-20T21:56:54Z | 2019-01-20T21:56:54Z | NONE | Thanks ... I am wondering if I used Numpy/Scipy functions on Xarray.data, will such computation is performed under the umbrella of Dask (Lazy evaluation)? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 | |
455328352 | https://github.com/pydata/xarray/issues/2676#issuecomment-455328352 | https://api.github.com/repos/pydata/xarray/issues/2676 | MDEyOklzc3VlQ29tbWVudDQ1NTMyODM1Mg== | ahmedshaaban1 15742456 | 2019-01-17T20:54:17Z | 2019-01-17T20:55:48Z | NONE | Thanks a lot for your answer. I am a novice to Xarray, and I am a heavy user of NumPy. Numpy FFT function works fine with Xarray variables, yet it returns NumPy array. NumPy reshape function, as mentioned above, does not work with Xarray variable. I am not yet able to get the big picture of how to use the power of Xarray and at the same time be able to use the math/statistics function of Numpy/SciPy. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Reshape function works only for numpy array and raise error with xarray variable. 399309171 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1