issue_comments
3 rows where issue = 398107776 and user = 1312546 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Dataset.from_dataframe will produce a FutureWarning for DatetimeTZ data · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
569820784 | https://github.com/pydata/xarray/issues/2666#issuecomment-569820784 | https://api.github.com/repos/pydata/xarray/issues/2666 | MDEyOklzc3VlQ29tbWVudDU2OTgyMDc4NA== | TomAugspurger 1312546 | 2019-12-30T22:58:23Z | 2019-12-30T22:58:23Z | MEMBER |
Ah, I was mistaken. I was thinking we needed to plump a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset.from_dataframe will produce a FutureWarning for DatetimeTZ data 398107776 | |
569810375 | https://github.com/pydata/xarray/issues/2666#issuecomment-569810375 | https://api.github.com/repos/pydata/xarray/issues/2666 | MDEyOklzc3VlQ29tbWVudDU2OTgxMDM3NQ== | TomAugspurger 1312546 | 2019-12-30T22:07:30Z | 2019-12-30T22:07:30Z | MEMBER | And there are a couple places that need updating, even with a ```pytb ~/sandbox/xarray/xarray/core/dataset.py in setitem(self, key, value) 1268 ) 1269 -> 1270 self.update({key: value}) 1271 1272 def delitem(self, key: Hashable) -> None: ~/sandbox/xarray/xarray/core/dataset.py in update(self, other, inplace) 3521 """ 3522 _check_inplace(inplace) -> 3523 merge_result = dataset_update_method(self, other) 3524 return self._replace(inplace=True, **merge_result._asdict()) 3525 ~/sandbox/xarray/xarray/core/merge.py in dataset_update_method(dataset, other) 862 other[key] = value.drop_vars(coord_names) 863 --> 864 return merge_core([dataset, other], priority_arg=1, indexes=dataset.indexes) ~/sandbox/xarray/xarray/core/merge.py in merge_core(objects, compat, join, priority_arg, explicit_coords, indexes, fill_value) 550 coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value 551 ) --> 552 collected = collect_variables_and_indexes(aligned) 553 554 prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat) ~/sandbox/xarray/xarray/core/merge.py in collect_variables_and_indexes(list_of_mappings) 275 append_all(coords, indexes) 276 --> 277 variable = as_variable(variable, name=name) 278 if variable.dims == (name,): 279 variable = variable.to_index_variable() ~/sandbox/xarray/xarray/core/variable.py in as_variable(obj, name) 105 elif isinstance(obj, tuple): 106 try: --> 107 obj = Variable(*obj) 108 except (TypeError, ValueError) as error: 109 # use .format() instead of % because it handles tuples consistently ~/sandbox/xarray/xarray/core/variable.py in init(self, dims, data, attrs, encoding, fastpath) 306 unrecognized encoding items. 307 """ --> 308 self._data = as_compatible_data(data, fastpath=fastpath) 309 self._dims = self._parse_dimensions(dims) 310 self._attrs = None ~/sandbox/xarray/xarray/core/variable.py in as_compatible_data(data, fastpath) 229 if isinstance(data, np.ndarray): 230 if data.dtype.kind == "O": --> 231 data = _possibly_convert_objects(data) 232 elif data.dtype.kind == "M": 233 data = np.asarray(data, "datetime64[ns]") ~/sandbox/xarray/xarray/core/variable.py in _possibly_convert_objects(values) 165 datetime64 and timedelta64, according to the pandas convention. 166 """ --> 167 return np.asarray(pd.Series(values.ravel())).reshape(values.shape) 168 169 ~/sandbox/numpy/numpy/core/_asarray.py in asarray(a, dtype, order) 83 84 """ ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~/sandbox/pandas/pandas/core/series.py in array(self, dtype) 730 "To keep the old behavior, pass 'dtype=\"datetime64[ns]\"'." 731 ) --> 732 warnings.warn(msg, FutureWarning, stacklevel=3) 733 dtype = "M8[ns]" 734 return np.asarray(self.array, dtype) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset.from_dataframe will produce a FutureWarning for DatetimeTZ data 398107776 | |
569805431 | https://github.com/pydata/xarray/issues/2666#issuecomment-569805431 | https://api.github.com/repos/pydata/xarray/issues/2666 | MDEyOklzc3VlQ29tbWVudDU2OTgwNTQzMQ== | TomAugspurger 1312546 | 2019-12-30T21:45:41Z | 2019-12-30T21:48:39Z | MEMBER | Just FYI, we're potentially enforcing this deprecation in https://github.com/pandas-dev/pandas/pull/30563 (which would be included in a pandas release in a week or two). Is that likely to cause problems for xarray users? It's not clear to me what the desired behavior is (https://github.com/pydata/xarray/issues/3291 seems to want to preserve the tz, though it isn't clear they are willing to be forced into an object dtype array for it). |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset.from_dataframe will produce a FutureWarning for DatetimeTZ data 398107776 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1