issue_comments
1 row where issue = 383945783 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Xarray equivalent of np.place or df.map(mapping)? · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
441483832 | https://github.com/pydata/xarray/issues/2568#issuecomment-441483832 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDQ0MTQ4MzgzMg== | max-sixty 5635139 | 2018-11-25T23:30:36Z | 2018-11-25T23:30:36Z | MEMBER | Agree that How about We would definitely use this. I agree it'd probably be used less in xarray than in pandas; though I'm keen to expand the API, in a deliberate and careful way, to some of the traditional pandas use-cases (but a small vote among many) |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1