home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

14 rows where issue = 377947810 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 4

  • tommylees112 7
  • max-sixty 3
  • spencerkclark 3
  • jhamman 1

author_association 2

  • MEMBER 7
  • NONE 7

issue 1

  • How do I copy my array forwards in time? · 14 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
460600719 https://github.com/pydata/xarray/issues/2547#issuecomment-460600719 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQ2MDYwMDcxOQ== tommylees112 21049064 2019-02-05T11:15:49Z 2019-02-05T11:15:49Z NONE

But the original question was answered so thank you very much!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
460600500 https://github.com/pydata/xarray/issues/2547#issuecomment-460600500 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQ2MDYwMDUwMA== tommylees112 21049064 2019-02-05T11:15:01Z 2019-02-05T11:15:01Z NONE

Sorry for the silence! I got pulled away to another project. Unfortunately I wasn't able to finish completing the task in xarray but I found that the easiest way around the problem was to use a combination of two functions:

```python def change_missing_vals_to_9999f(ds, variable): """ Change the missing values from np.nan to -9999.0f""" arr = ds[variable].values

# set the values to -9999
arr[np.isnan(arr)] = -9999

# reassign the values back to the array
ds[variable] = (ds[variable].dims, arr)

return ds

def change_missing_data_values(filename): """ change the values INSIDE the .nc file to -9999.0f """ assert ( filename.split(".")[-1] == "nc" ), "This function only works with .nc files. Filename: {}".format(filename) print(" Processing {} ").format(filename)

# ONLY OPEN THE DATASET ONCE
ds = xr.open_dataset(filename)
variables = ds.data_vars.keys()

for variable in variables:
    print("** Working on variable {} **".format(variable))
    ds = change_missing_vals_to_9999f(ds, variable)

# ds.map(change_missing_vals_to_9999f, variable)

# rewrite to netcdf file
ds.to_netcdf(filename)
print("** Written variables {} to filename {} **").format(variables, filename)

return

```

and then another function using the NCO command:

def change_nc_FillValue(filename): """ use the NCO command to change the fillvalue metadata in the .nc files""" command = "ncatted -a _FillValue,,m,f,-9999.0 {}".format(filename) os.system(command) print("** _FillValue changed on {} file **".format(filename)) return

RUN HERE: ``` @click.command() @click.argument("filename", type=str) def main(filename): """ Run the two commands a) change the Values INSIDE the .nc file [python, numpy, xarray] b) change the associated METADATA for the .nc file headers [nco] """ change_missing_data_values(filename) change_nc_FillValue(filename)

print("**** PROCESS DONE FOR {} ****").format(filename)

return

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
460020696 https://github.com/pydata/xarray/issues/2547#issuecomment-460020696 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQ2MDAyMDY5Ng== jhamman 2443309 2019-02-03T03:50:47Z 2019-02-03T03:50:47Z MEMBER

@tommylees112 - this issue has sat for a bit of time now. Did you end up with a solution here? If so, is okay with you if we close this out?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436695050 https://github.com/pydata/xarray/issues/2547#issuecomment-436695050 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjY5NTA1MA== spencerkclark 6628425 2018-11-07T16:53:14Z 2018-11-07T16:53:14Z MEMBER

The _FillValue encoding seems to be preserved with your desired value in my example: ``` $ ncdump -h result.nc netcdf result { dimensions: time = 366 ; y = 200 ; x = 200 ; variables: int64 time(time) ; time:units = "days since 2000-01-01 00:00:00" ; time:calendar = "proleptic_gregorian" ; short Rg(time, y, x) ; Rg:_FillValue = -1s ; Rg:long_name = "HWSD sub sum content" ; Rg:units = "percent wt" ; Rg:valid_range = 97., 103. ; double latitude(y, x) ; latitude:_FillValue = -99999. ; double longitude(y, x) ; longitude:_FillValue = -99999. ;

// global attributes: :Conventions = "CF-1.0" ; :content = "HARMONIZED WORLD SOIL DATABASE; first it was aggregated to one global file; then the missing areas were filled with interpolated data; then separate tiles were extracted" ; :scaling_factor = "20" ; ``` Is the time encoding important for your land surface model? That does change in my example (see the units attribute); you might need some special logic to handle that.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436688702 https://github.com/pydata/xarray/issues/2547#issuecomment-436688702 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjY4ODcwMg== tommylees112 21049064 2018-11-07T16:36:09Z 2018-11-07T16:46:01Z NONE

@spencerkclark Thanks very much that is awesome!

One final Q: How do I set the fill_value not to nan but to -1 (this is what I need for the Land Surface Model)?

The current output of ncdump -h Rg_dummy.nc is:

... variables: double time(time) ; time:_FillValue = NaN ; time:standard_name = "time" ; time:units = "day as %Y%m%d.%f" ; time:calendar = "proleptic_gregorian" ; short Rg(time, y, x) ; Rg:_FillValue = NaN ; Rg:long_name = "HWSD sub sum content" ; Rg:units = "percent wt" ; Rg:valid_range = 97., 103. ; double latitude(y, x) ; latitude:_FillValue = -99999. ; double longitude(y, x) ; longitude:_FillValue = -99999. ;

What I want is:

ncdump -h Rg_dummy.nc ... variables: double time(time) ; time:_FillValue = -1s ; time:standard_name = "time" ; time:units = "day as %Y%m%d.%f" ; time:calendar = "proleptic_gregorian" ; short Rg(time, y, x) ; Rg:_FillValue = -1s ; Rg:long_name = "HWSD sub sum content" ; Rg:units = "percent wt" ; Rg:valid_range = 97., 103. ; double latitude(y, x) ; latitude:_FillValue = -99999. ; double longitude(y, x) ; longitude:_FillValue = -99999. ;

I want to do something like: ds2.to_netcdf(filename, set_fill_value=-1)

I saw these: Issue #1598 Issue #1865

But failed to understand where/how to use them

Thank you so much for helping me out with xarray. It's crazy powerful. It's also just very big!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436679811 https://github.com/pydata/xarray/issues/2547#issuecomment-436679811 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjY3OTgxMQ== spencerkclark 6628425 2018-11-07T16:14:27Z 2018-11-07T16:14:27Z MEMBER

Thanks @tommylees112 -- note that the reindex and ffill methods do not operate in-place, so you'll need to assign the results of them to new variables. You can also do them all in one step: ``` In [1]: import xarray as xr; import pandas as pd; import numpy as np

In [2]: ds = xr.open_dataset('Rg_dummy.nc')

In [3]: times = pd.date_range("2000-01-01", "2000-12-31", name="time")

In [4]: ds['time'] = np.array([times[0]])

In [5]: ds2 = ds.reindex(time=times, method='ffill')

In [6]: ds2.to_netcdf('result.nc') ``` Regarding the issue saving to files -- I can reproduce that issue with older xarray versions. It is related to

2512 and was fixed in #2513 (i.e. it works with the master version of xarray). The good news is this bug only applies to saving ds in my example, not ds2, so you should be able to do this with your current setup just fine.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436668695 https://github.com/pydata/xarray/issues/2547#issuecomment-436668695 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjY2ODY5NQ== tommylees112 21049064 2018-11-07T15:45:22Z 2018-11-07T15:46:15Z NONE

That all worked great until I tried to write out to a .nc file.

```python data_dir = "./" filename = "Rg_dummy.nc"

get the datetime range

times = pd.date_range("2000-01-01", "2000-12-31", name="time") var = "Rg"

copyfile(data_dir + filename, "temp.nc") ds = xr.open_dataset("temp.nc") print("Temporary Data read to Python")

FORWARD FILL FROM THE ORIGINAL DATA to new timesteps

ds['time'] = np.array([times[0]]) ds.reindex({"time":times}) ds.ffill("time")

ds.to_netcdf(filename, format="NETCDF3_CLASSIC") print(filename, "Written!")

remove temporary file

os.remove(data_dir+"temp.nc") print("Temporary Data Removed")

del ds ```

I get the following Error message: ``` Temporary Data read to Python


TypeError Traceback (most recent call last) <ipython-input-228-e3d645224353> in <module>() 15 ds.ffill("time") 16 ---> 17 ds.to_netcdf(filename, format="NETCDF3_CLASSIC") 18 print(filename, "Written!") 19

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/dataset.pyc in to_netcdf(self, path, mode, format, group, engine, encoding, unlimited_dims, compute) 1148 engine=engine, encoding=encoding, 1149 unlimited_dims=unlimited_dims, -> 1150 compute=compute) 1151 1152 def to_zarr(self, store=None, mode='w-', synchronizer=None, group=None,

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/api.pyc in to_netcdf(dataset, path_or_file, mode, format, group, engine, writer, encoding, unlimited_dims, compute) 721 try: 722 dataset.dump_to_store(store, sync=sync, encoding=encoding, --> 723 unlimited_dims=unlimited_dims, compute=compute) 724 if path_or_file is None: 725 return target.getvalue()

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/dataset.pyc in dump_to_store(self, store, encoder, sync, encoding, unlimited_dims, compute) 1073 1074 store.store(variables, attrs, check_encoding, -> 1075 unlimited_dims=unlimited_dims) 1076 if sync: 1077 store.sync(compute=compute)

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/common.pyc in store(self, variables, attributes, check_encoding_set, unlimited_dims) 366 self.set_dimensions(variables, unlimited_dims=unlimited_dims) 367 self.set_variables(variables, check_encoding_set, --> 368 unlimited_dims=unlimited_dims) 369 370 def set_attributes(self, attributes):

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in set_variables(self, args, kwargs) 405 def set_variables(self, args, kwargs): 406 with self.ensure_open(autoclose=False): --> 407 super(NetCDF4DataStore, self).set_variables(*args, kwargs) 408 409 def encode_variable(self, variable):

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/common.pyc in set_variables(self, variables, check_encoding_set, unlimited_dims) 403 check = vn in check_encoding_set 404 target, source = self.prepare_variable( --> 405 name, v, check, unlimited_dims=unlimited_dims) 406 407 self.writer.add(source, target)

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in prepare_variable(self, name, variable, check_encoding, unlimited_dims) 451 least_significant_digit=encoding.get( 452 'least_significant_digit'), --> 453 fill_value=fill_value) 454 _disable_auto_decode_variable(nc4_var) 455

netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.createVariable()

netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Variable.init()

TypeError: illegal primitive data type, must be one of ['i8', 'f4', 'f8', 'S1', 'i2', 'i4', 'u8', 'u4', 'u1', 'u2', 'i1'], got datetime64[ns] ```

and if I try with the default netcdf writing options

python ds.to_netcdf(filename) print(filename, "Written!")

I get this error message: ``` Temporary Data read to Python


ValueError Traceback (most recent call last) <ipython-input-229-453d5f074d33> in <module>() 15 ds.ffill("time") 16 ---> 17 ds.to_netcdf(filename) 18 print(filename, "Written!") 19

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/dataset.pyc in to_netcdf(self, path, mode, format, group, engine, encoding, unlimited_dims, compute) 1148 engine=engine, encoding=encoding, 1149 unlimited_dims=unlimited_dims, -> 1150 compute=compute) 1151 1152 def to_zarr(self, store=None, mode='w-', synchronizer=None, group=None,

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/api.pyc in to_netcdf(dataset, path_or_file, mode, format, group, engine, writer, encoding, unlimited_dims, compute) 721 try: 722 dataset.dump_to_store(store, sync=sync, encoding=encoding, --> 723 unlimited_dims=unlimited_dims, compute=compute) 724 if path_or_file is None: 725 return target.getvalue()

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/dataset.pyc in dump_to_store(self, store, encoder, sync, encoding, unlimited_dims, compute) 1073 1074 store.store(variables, attrs, check_encoding, -> 1075 unlimited_dims=unlimited_dims) 1076 if sync: 1077 store.sync(compute=compute)

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/common.pyc in store(self, variables, attributes, check_encoding_set, unlimited_dims) 366 self.set_dimensions(variables, unlimited_dims=unlimited_dims) 367 self.set_variables(variables, check_encoding_set, --> 368 unlimited_dims=unlimited_dims) 369 370 def set_attributes(self, attributes):

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in set_variables(self, args, kwargs) 405 def set_variables(self, args, kwargs): 406 with self.ensure_open(autoclose=False): --> 407 super(NetCDF4DataStore, self).set_variables(*args, kwargs) 408 409 def encode_variable(self, variable):

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/common.pyc in set_variables(self, variables, check_encoding_set, unlimited_dims) 403 check = vn in check_encoding_set 404 target, source = self.prepare_variable( --> 405 name, v, check, unlimited_dims=unlimited_dims) 406 407 self.writer.add(source, target)

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in prepare_variable(self, name, variable, check_encoding, unlimited_dims) 418 unlimited_dims=None): 419 datatype = _get_datatype(variable, self.format, --> 420 raise_on_invalid_encoding=check_encoding) 421 attrs = variable.attrs.copy() 422

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in _get_datatype(var, nc_format, raise_on_invalid_encoding) 99 def _get_datatype(var, nc_format='NETCDF4', raise_on_invalid_encoding=False): 100 if nc_format == 'NETCDF4': --> 101 datatype = _nc4_dtype(var) 102 else: 103 if 'dtype' in var.encoding:

/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in _nc4_dtype(var) 122 else: 123 raise ValueError('unsupported dtype for netCDF4 variable: {}' --> 124 .format(var.dtype)) 125 return dtype 126

ValueError: unsupported dtype for netCDF4 variable: datetime64[ns] ```

Version information

If this is useful:

``` In [230]: xr.show_versions()

INSTALLED VERSIONS

commit: None python: 2.7.15.final.0 python-bits: 64 OS: Linux OS-release: 2.6.32-696.18.7.el6.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None

xarray: 0.10.7 pandas: 0.23.0 numpy: 1.11.3 scipy: 1.1.0 netCDF4: 1.4.0 h5netcdf: None h5py: None Nio: None zarr: None bottleneck: 1.2.1 cyordereddict: None dask: None distributed: None matplotlib: 1.5.1 cartopy: None seaborn: None setuptools: 39.1.0 pip: 18.1 conda: None pytest: None IPython: 5.7.0 sphinx: None ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436638944 https://github.com/pydata/xarray/issues/2547#issuecomment-436638944 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjYzODk0NA== spencerkclark 6628425 2018-11-07T14:23:42Z 2018-11-07T14:23:42Z MEMBER

@tommylees112 I had a look at your dataset and noticed that the time coordinate was not encoded in a way that allows xarray to automatically decode the time values into datetimes. Specifically, the units attribute is not in the format of some unit of time (e.g. 'seconds') since a given reference date. ``` $ ncdump -h Rg_dummy.nc netcdf Rg_dummy { dimensions: time = 1 ; y = 200 ; x = 200 ; variables: double time(time) ; time:_FillValue = NaN ; time:standard_name = "time" ; time:units = "day as %Y%m%d.%f" ; time:calendar = "proleptic_gregorian" ; short Rg(time, y, x) ; Rg:_FillValue = -1s ; Rg:long_name = "HWSD sub sum content" ; Rg:units = "percent wt" ; Rg:valid_range = 97., 103. ; double latitude(y, x) ; latitude:_FillValue = -99999. ; double longitude(y, x) ; longitude:_FillValue = -99999. ;

// global attributes: :Conventions = "CF-1.0" ; :content = "HARMONIZED WORLD SOIL DATABASE; first it was aggregated to one global file; then the missing areas were filled with interpolated data; then separate tiles were extracted" ; :scaling_factor = "20" ; } `` This is whyds.time` is an array of floats when you load the file in. We could discuss how to address that, but depending on your broader needs here that might not be a major concern.

Regarding assigning a new value to the time coordinate, the following should work: python ds['time'] = np.array([times[0]])

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436606451 https://github.com/pydata/xarray/issues/2547#issuecomment-436606451 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjYwNjQ1MQ== tommylees112 21049064 2018-11-07T12:24:36Z 2018-11-07T12:25:02Z NONE

The ds.time[0] won't let me set it's value to a datetime. Instead it returns a float: python In [19]: ds.time[0].item() Out[19]: 10509.0

And none of the following work: ```python

doesn't change the time value

ds.time[0].values = times[0]

returns an error because I can't assign to a function call

ds.time[0].item() = times[0]

returns ValueError: replacement data must match the Variable's shape

ds['time'].values = np.array(times[0]) ```

Thanks for your help!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436422432 https://github.com/pydata/xarray/issues/2547#issuecomment-436422432 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjQyMjQzMg== max-sixty 5635139 2018-11-06T21:54:18Z 2018-11-06T21:54:18Z MEMBER

Can you ensure times[0].item() == ds.time[0].item() prior to the reindex? Otherwise the reindex won't find the original index value and will fill with NaNs...

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436400765 https://github.com/pydata/xarray/issues/2547#issuecomment-436400765 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjQwMDc2NQ== tommylees112 21049064 2018-11-06T20:40:20Z 2018-11-06T20:41:25Z NONE

Data: netcdf_files.zip

Code below:

```python import numpy as np import pandas as pd import xarray as xr from shutil import copyfile import os

data_dir = "./" filename = "Rg_dummy.nc"

get the datetime range

times = pd.date_range("2000-01-01", "2000-12-31", name="time") var = "Rg"

copyfile(filename, "temp.nc") ds = xr.open_dataset("temp.nc") print("Temporary Data read to Python")

FORWARD FILL FROM THE ORIGINAL DATA to new timesteps

ds.reindex({"time":times}) ds.ffill("time")

ds.to_netcdf(filename, format="NETCDF3_CLASSIC")

print(filename, "Written!")

remove temporary file

os.remove(data_dir+"temp.nc") print("Temporary Data Removed")

del ds

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436390574 https://github.com/pydata/xarray/issues/2547#issuecomment-436390574 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjM5MDU3NA== max-sixty 5635139 2018-11-06T20:06:54Z 2018-11-06T20:06:54Z MEMBER

Your original value needs to be in the time index in order to remain there after the reindex. Currently it looks like a float value:

Coordinates: * time (time) float64 9.505e+17

If you have a repro example (link in issue template) it's easier to offer help on the whole issue

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436383962 https://github.com/pydata/xarray/issues/2547#issuecomment-436383962 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjM4Mzk2Mg== tommylees112 21049064 2018-11-06T19:45:46Z 2018-11-06T19:50:00Z NONE

Thanks for your help! you definitely understood me correctly!

This doesn't seem to work as it fills myRg arrays with nan values.

python ds = ds.reindex({"time":pd.date_range("2000-01-01","2000-12-31")}) ds = ds.ffill("time")

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810
436336253 https://github.com/pydata/xarray/issues/2547#issuecomment-436336253 https://api.github.com/repos/pydata/xarray/issues/2547 MDEyOklzc3VlQ29tbWVudDQzNjMzNjI1Mw== max-sixty 5635139 2018-11-06T17:23:28Z 2018-11-06T17:23:28Z MEMBER

IIUC, this is actually much easier - reindex on your enlarged times index, and then use ffill. No need for the for loop etc

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  How do I copy my array forwards in time? 377947810

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 1037.77ms · About: xarray-datasette