issue_comments
2 rows where issue = 374460958 and user = 35968931 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Treat accessor dataarrays as members of parent dataset · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
434861750 | https://github.com/pydata/xarray/issues/2517#issuecomment-434861750 | https://api.github.com/repos/pydata/xarray/issues/2517 | MDEyOklzc3VlQ29tbWVudDQzNDg2MTc1MA== | TomNicholas 35968931 | 2018-10-31T21:56:11Z | 2018-10-31T21:56:11Z | MEMBER | That's true, but unless you start subclassing dataset then isn't that always going to be the case? You have some quantity which you can only calculate with either a function or an accessor method on the dataset, wouldn't you need to alter the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Treat accessor dataarrays as members of parent dataset 374460958 | |
434646452 | https://github.com/pydata/xarray/issues/2517#issuecomment-434646452 | https://api.github.com/repos/pydata/xarray/issues/2517 | MDEyOklzc3VlQ29tbWVudDQzNDY0NjQ1Mg== | TomNicholas 35968931 | 2018-10-31T11:05:18Z | 2018-10-31T11:05:18Z | MEMBER | If you want to return your newly-calculated altitude and also have it be a full data_var in your dataset, one way would be to just alter the original dataset in-place. Something like ```python import xarray as xr import pandas as pd import xarray.testing as xrt @xr.register_dataset_accessor('acc') class Accessor(object): def init(self, xarray_ds): self._ds = xarray_ds self._altitude = None
expected = xr.Dataset({'data': (['time'], [100, 30, 10, 3, 1]), 'altitude': (['time'], [5, 10, 15, 20, 25])}, coords={'time': pd.date_range('2014-09-06', periods=5, freq='1s')}) actual = xr.Dataset({'data': (['time'], [100, 30, 10, 3, 1])}, coords={'time': pd.date_range('2014-09-06', periods=5, freq='1s')}) Return newly-calculated altitude, but also store it in the actual dataset for lateraltitude = actual.acc.altitude Check that workedxrt.assert_equal(actual, expected) xrt.assert_equal(actual['altitude'], actual.acc.altitude) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Treat accessor dataarrays as members of parent dataset 374460958 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1