issue_comments
22 rows where issue = 372848074 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- open_mfdataset usage and limitations. · 22 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
768470505 | https://github.com/pydata/xarray/issues/2501#issuecomment-768470505 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDc2ODQ3MDUwNQ== | dcherian 2448579 | 2021-01-27T18:06:16Z | 2021-01-27T18:06:16Z | MEMBER | I think this is stale now. See https://xarray.pydata.org/en/stable/io.html#reading-multi-file-datasets for latest guidance on reading such datasets. Please open a new issue if you are still having trouble with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
512663861 | https://github.com/pydata/xarray/issues/2501#issuecomment-512663861 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUxMjY2Mzg2MQ== | rafa-guedes 7799184 | 2019-07-18T04:51:06Z | 2019-07-18T04:52:17Z | CONTRIBUTOR | Hi guys, I'm having some issue that looks similar to @rsignell-usgs. Trying to open 413 netcdf files using ```ipython In [1] import xarray as xr In [2]: dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitude': 100}, parallel=False) In [3]: dset Out[3]: <xarray.Dataset> Dimensions: (latitude: 190, longitude: 289, time: 302092) Coordinates: * longitude (longitude) float32 70.0 70.4 70.8 71.2 ... 184.4 184.8 185.2 * latitude (latitude) float32 -55.6 -55.2 -54.8 -54.4 ... 19.2 19.6 20.0 * time (time) datetime64[ns] 1979-01-01 ... 2013-05-31T23:00:00.000013440 Data variables: hs (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> fp (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> dp (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> wl (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> U10 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> V10 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> hs1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> hs2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> tp1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> tp2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> lp0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> lp1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> lp2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> th0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> th1 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> th2 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> hs0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> tp0 (time, latitude, longitude) float32 dask.array<shape=(302092, 190, 289), chunksize=(745, 100, 100)> ``` Trying to read it on a standard python session gives me core dumped: ```ipython In [1]: import xarray as xr In [2]: dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitude': 100}, parallel=True) Bus error (core dumped) ``` Trying to read it on a dask cluster I get: ```ipython In [1]: from dask.distributed import Client In [2]: import xarray as xr In [3]: client = Client() In [4]: dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitud ...: e': 100}, parallel=True) free(): double free detected in tcache 2free(): double free detected in tcache 2 free(): double free detected in tcache 2 distributed.nanny - WARNING - Worker process 18744 was killed by signal 11 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Worker process 18740 was killed by signal 6 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Worker process 18742 was killed by signal 7 distributed.nanny - WARNING - Worker process 18738 was killed by signal 6 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Restarting worker free(): double free detected in tcache 2munmap_chunk(): invalid pointer free(): double free detected in tcache 2 free(): double free detected in tcache 2 distributed.nanny - WARNING - Worker process 19082 was killed by signal 6 distributed.nanny - WARNING - Restarting worker distributed.nanny - WARNING - Worker process 19073 was killed by signal 6 distributed.nanny - WARNING - Restarting worker KilledWorker Traceback (most recent call last) <ipython-input-4-740561b80fec> in <module>() ----> 1 dset = xr.open_mfdataset("./bom-ww3/bom-ww3_*.nc", chunks={'time': 744, 'latitude': 100, 'longitude': 100}, parallel=True) /usr/local/lib/python3.7/dist-packages/xarray/backends/api.py in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, lock, data_vars, coords, combine, autoclose, parallel, **kwargs) 772 # calling compute here will return the datasets/file_objs lists, 773 # the underlying datasets will still be stored as dask arrays --> 774 datasets, file_objs = dask.compute(datasets, file_objs) 775 776 # Combine all datasets, closing them in case of a ValueError /usr/local/lib/python3.7/dist-packages/dask/base.py in compute(args, kwargs) 444 keys = [x.dask_keys() for x in collections] 445 postcomputes = [x.dask_postcompute() for x in collections] --> 446 results = schedule(dsk, keys, kwargs) 447 return repack([f(r, a) for r, (f, a) in zip(results, postcomputes)]) 448 /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in get(self, dsk, keys, restrictions, loose_restrictions, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs) 2525 should_rejoin = False 2526 try: -> 2527 results = self.gather(packed, asynchronous=asynchronous, direct=direct) 2528 finally: 2529 for f in futures.values(): /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in gather(self, futures, errors, direct, asynchronous) 1821 direct=direct, 1822 local_worker=local_worker, -> 1823 asynchronous=asynchronous, 1824 ) 1825 /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in sync(self, func, asynchronous, callback_timeout, args, kwargs) 761 else: 762 return sync( --> 763 self.loop, func, args, callback_timeout=callback_timeout, **kwargs 764 ) 765 /home/oceanum/.local/lib/python3.7/site-packages/distributed/utils.py in sync(loop, func, callback_timeout, args, kwargs) 330 e.wait(10) 331 if error[0]: --> 332 six.reraise(error[0]) 333 else: 334 return result[0] /usr/lib/python3/dist-packages/six.py in reraise(tp, value, tb) 691 if value.traceback is not tb: 692 raise value.with_traceback(tb) --> 693 raise value 694 finally: 695 value = None /home/oceanum/.local/lib/python3.7/site-packages/distributed/utils.py in f() 315 if callback_timeout is not None: 316 future = gen.with_timeout(timedelta(seconds=callback_timeout), future) --> 317 result[0] = yield future 318 except Exception as exc: 319 error[0] = sys.exc_info() /home/oceanum/.local/lib/python3.7/site-packages/tornado/gen.py in run(self) 733 734 try: --> 735 value = future.result() 736 except Exception: 737 exc_info = sys.exc_info() /home/oceanum/.local/lib/python3.7/site-packages/tornado/gen.py in run(self) 740 if exc_info is not None: 741 try: --> 742 yielded = self.gen.throw(*exc_info) # type: ignore 743 finally: 744 # Break up a reference to itself /home/oceanum/.local/lib/python3.7/site-packages/distributed/client.py in _gather(self, futures, errors, direct, local_worker) 1678 exc = CancelledError(key) 1679 else: -> 1680 six.reraise(type(exception), exception, traceback) 1681 raise exc 1682 if errors == "skip": /usr/lib/python3/dist-packages/six.py in reraise(tp, value, tb) 691 if value.traceback is not tb: 692 raise value.with_traceback(tb) --> 693 raise value 694 finally: 695 value = None KilledWorker: ('open_dataset-e7916acb-6d9f-4532-ab76-5b9c1b1a39c2', <Worker 'tcp://10.240.0.5:36019', memory: 0, processing: 63>) ``` Is there anything obviously wrong I'm trying here please? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
510144707 | https://github.com/pydata/xarray/issues/2501#issuecomment-510144707 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUxMDE0NDcwNw== | rsignell-usgs 1872600 | 2019-07-10T16:59:12Z | 2019-07-11T11:47:02Z | NONE | @TomAugspurger , I sat down here at Scipy with @rabernat and he instantly realized that we needed to drop the So if I use this code, the I'm now running into memory issues when I write the zarr data -- but I should raise that as a new issue, right? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
510217080 | https://github.com/pydata/xarray/issues/2501#issuecomment-510217080 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUxMDIxNzA4MA== | TomAugspurger 1312546 | 2019-07-10T20:30:41Z | 2019-07-10T20:30:41Z | MEMBER | Yep, that’s my suspicion as well. I’m still plugging away at it. Currently the pausing logic isn’t quite working well.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
510169853 | https://github.com/pydata/xarray/issues/2501#issuecomment-510169853 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUxMDE2OTg1Mw== | rabernat 1197350 | 2019-07-10T18:10:37Z | 2019-07-10T18:10:37Z | MEMBER | I believe that the memory issue is basically the same as https://github.com/dask/distributed/issues/2602. The graphs look like: Reading and rechunking increase memory consumption. Writing relieves it. In Rich's case, the workers just load too much data before they write it. Eventually they run out of memory. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
510167911 | https://github.com/pydata/xarray/issues/2501#issuecomment-510167911 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUxMDE2NzkxMQ== | TomAugspurger 1312546 | 2019-07-10T18:05:07Z | 2019-07-10T18:05:07Z | MEMBER | Great, thanks. I’ll look into the memory issue when writing. We may already have an issue for it.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
509379294 | https://github.com/pydata/xarray/issues/2501#issuecomment-509379294 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwOTM3OTI5NA== | rsignell-usgs 1872600 | 2019-07-08T20:28:48Z | 2019-07-08T20:29:20Z | NONE | @TomAugspurger , I thought @rabernat's suggestion of implementing
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
509346055 | https://github.com/pydata/xarray/issues/2501#issuecomment-509346055 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwOTM0NjA1NQ== | TomAugspurger 1312546 | 2019-07-08T18:46:58Z | 2019-07-08T18:46:58Z | MEMBER | @rsignell-usgs very helpful, thanks. I'd noticed that there was a pause after the open_dataset tasks finish, indicating that either the scheduler or (more likely) the client was doing work rather than the cluster. Most likely @rabernat's guess
is correct. Verifying all that now, and looking into if / how that can be done on the workers. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
509341467 | https://github.com/pydata/xarray/issues/2501#issuecomment-509341467 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwOTM0MTQ2Nw== | rsignell-usgs 1872600 | 2019-07-08T18:34:02Z | 2019-07-08T18:34:02Z | NONE | @rabernat , to answer your question, if I open just two files:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
509340139 | https://github.com/pydata/xarray/issues/2501#issuecomment-509340139 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwOTM0MDEzOQ== | rsignell-usgs 1872600 | 2019-07-08T18:30:18Z | 2019-07-08T18:30:18Z | NONE | @TomAugspurger, okay, I just ran the above code again and here's what happens: The Then, despite the tasks showing on the dashboard being completed, the then after about 10 more minutes, I get these warnings:
and then the errors:
Does this help? I'd be happy to screenshare if that would be useful. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
509307081 | https://github.com/pydata/xarray/issues/2501#issuecomment-509307081 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwOTMwNzA4MQ== | TomAugspurger 1312546 | 2019-07-08T16:57:15Z | 2019-07-08T16:57:15Z | MEMBER | I'm looking into it today. Can you clarify
by "process" do you mean a dask worker process, or just the main python process executing the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
509282831 | https://github.com/pydata/xarray/issues/2501#issuecomment-509282831 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwOTI4MjgzMQ== | rsignell-usgs 1872600 | 2019-07-08T15:51:23Z | 2019-07-08T15:51:23Z | NONE | @TomAugspurger, I'm back from vacation now and ready to attack this again. Any updates on your end? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
506497180 | https://github.com/pydata/xarray/issues/2501#issuecomment-506497180 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwNjQ5NzE4MA== | TomAugspurger 1312546 | 2019-06-27T20:24:26Z | 2019-06-27T20:24:26Z | MEMBER |
Good to know! FYI, https://github.com/pydata/xarray/issues/2501#issuecomment-506478508 was user error (I can access it, but need to specify the us-east-1 region). Taking a look now. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
506482057 | https://github.com/pydata/xarray/issues/2501#issuecomment-506482057 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwNjQ4MjA1Nw== | rabernat 1197350 | 2019-06-27T19:36:51Z | 2019-06-27T19:36:51Z | MEMBER | @rsignell-usgs Can you post the xarray repr of two sample files post pre-processing function? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
506481845 | https://github.com/pydata/xarray/issues/2501#issuecomment-506481845 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwNjQ4MTg0NQ== | rabernat 1197350 | 2019-06-27T19:36:11Z | 2019-06-27T19:36:11Z | MEMBER |
The datasets in our cloud datastore are designed explicitly to avoid this problem! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
506478508 | https://github.com/pydata/xarray/issues/2501#issuecomment-506478508 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwNjQ3ODUwOA== | TomAugspurger 1312546 | 2019-06-27T19:25:05Z | 2019-06-27T19:25:05Z | MEMBER | Thanks, will take a look this afternoon. Are there any datasets on https://pangeo-data.github.io/pangeo-datastore/ that would exhibit this poor behavior? I may not have access to the bucket (or I'm misusing
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
506475819 | https://github.com/pydata/xarray/issues/2501#issuecomment-506475819 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwNjQ3NTgxOQ== | rsignell-usgs 1872600 | 2019-06-27T19:16:28Z | 2019-06-27T19:24:31Z | NONE | I tried this, and either I didn't apply it right, or it didn't work. The memory use kept growing until the process died. My code to process the 8760 netcdf files with ```python import xarray as xr from dask.distributed import Client, progress, LocalCluster cluster = LocalCluster() client = Client(cluster) import pandas as pd dates = pd.date_range(start='2009-01-01 00:00',end='2009-12-31 23:00', freq='1h') files = ['./nc/{}/{}.CHRTOUT_DOMAIN1.comp'.format(date.strftime('%Y'),date.strftime('%Y%m%d%H%M')) for date in dates] def drop_coords(ds): return ds.reset_coords(drop=True) ds = xr.open_mfdataset(files, preprocess=drop_coords, autoclose=True, parallel=True) ds1 = ds.chunk(chunks={'time':168, 'feature_id':209929}) import numcodecs numcodecs.blosc.use_threads = False ds1.to_zarr('zarr/2009', mode='w', consolidated=True) ``` I transfered the netcdf files from AWS S3 to my local disk to run this, using this command:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
503641038 | https://github.com/pydata/xarray/issues/2501#issuecomment-503641038 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDUwMzY0MTAzOA== | rabernat 1197350 | 2019-06-19T16:48:29Z | 2019-06-19T16:48:29Z | MEMBER | Try writing a preprocessor function that drops all coordinates
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
497381301 | https://github.com/pydata/xarray/issues/2501#issuecomment-497381301 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDQ5NzM4MTMwMQ== | rsignell-usgs 1872600 | 2019-05-30T15:55:56Z | 2019-05-30T15:58:48Z | NONE | I'm hitting some memory issues with using Specifically, I'm trying to open 8760 NetCDF files with an 8 node, 40 cpu LocalCluster. When I issue:
Then 4 more minutes go by before I get a bunch of errors like:
Any suggestions? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
432546977 | https://github.com/pydata/xarray/issues/2501#issuecomment-432546977 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDQzMjU0Njk3Nw== | Thomas-Z 1492047 | 2018-10-24T07:38:31Z | 2018-10-24T07:38:31Z | CONTRIBUTOR | Thank you for looking into this. I just want to point out that I'm not that much concerned with the "slow performance" but much more with the memory consumption and the limitation it implies. ```python from glob import glob import xarray as xr all_files = glob('...TP110.nc') display(xr.open_dataset(all_files[0])) display(xr.open_dataset(all_files[1])) ```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
432342306 | https://github.com/pydata/xarray/issues/2501#issuecomment-432342306 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDQzMjM0MjMwNg== | rabernat 1197350 | 2018-10-23T17:27:50Z | 2018-10-23T17:27:50Z | MEMBER | ^ I'm assuming you're in a notebook. If not, call |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 | |
432342180 | https://github.com/pydata/xarray/issues/2501#issuecomment-432342180 | https://api.github.com/repos/pydata/xarray/issues/2501 | MDEyOklzc3VlQ29tbWVudDQzMjM0MjE4MA== | rabernat 1197350 | 2018-10-23T17:27:30Z | 2018-10-23T17:27:30Z | MEMBER | In To help us help you debug, please provide more information about the files your are opening. Specifically, please call |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset usage and limitations. 372848074 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 6