home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where issue = 372244156 and user = 12229877 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • Zac-HD · 2 ✖

issue 1

  • Tremendous slowdown when using dask integration · 2 ✖

author_association 1

  • CONTRIBUTOR 2
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
431718845 https://github.com/pydata/xarray/issues/2499#issuecomment-431718845 https://api.github.com/repos/pydata/xarray/issues/2499 MDEyOklzc3VlQ29tbWVudDQzMTcxODg0NQ== Zac-HD 12229877 2018-10-22T00:50:22Z 2018-10-22T00:50:22Z CONTRIBUTOR

I'd also try to find a way to use a groupby or apply_along_axis without stacking and unstacking the data, and to choose chunks that match the layout on disk - i.e. try lon=1 if the order is time, lat, lon. If the time observations are not contiguous in memory, it's probably worth reshaping the whole array and writing it back to disk up front.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Tremendous slowdown when using dask integration 372244156
431657200 https://github.com/pydata/xarray/issues/2499#issuecomment-431657200 https://api.github.com/repos/pydata/xarray/issues/2499 MDEyOklzc3VlQ29tbWVudDQzMTY1NzIwMA== Zac-HD 12229877 2018-10-21T10:30:23Z 2018-10-21T10:30:23Z CONTRIBUTOR

dataset = xr.open_dataset(netcdf_precip, chunks={'lat': 1})

This makes me really suspicious - lat=1 is a very very small chunk size, and completely unchunked in time and lon. Without knowing anything else, I'd try chunks=dict(lat=200, lon=200) or higher depending on the time dim - Dask is most efficient with chunks of around 10MB for most workloads.

This all also depends on the data layout on disk too - can you share repr(xr.open_dataset(netcdf_precip))? What does ncdump say?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Tremendous slowdown when using dask integration 372244156

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 879.689ms · About: xarray-datasette