issue_comments
1 row where issue = 332471780 and user = 6598749 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Problem opening unstructured grid ocean forecasts with 4D vertical coordinates · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 641410484 | https://github.com/pydata/xarray/issues/2233#issuecomment-641410484 | https://api.github.com/repos/pydata/xarray/issues/2233 | MDEyOklzc3VlQ29tbWVudDY0MTQxMDQ4NA== | angelra 6598749 | 2020-06-09T16:18:21Z | 2020-06-09T16:18:21Z | NONE | I had to go around this issue and not use xarray but pandas instead or plain netdcf4 nc = netCDF4.Dataset(input_file) h = nc.variables[vname] times = nc.variables['time'] jd = netCDF4.num2date(times[:],times.units) hs = pd.Series(h[:,station],index=jd) I would love to know if there is a way to do it over xarray since it is so nice to use. Best regards |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Problem opening unstructured grid ocean forecasts with 4D vertical coordinates 332471780 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1