issue_comments
6 rows where issue = 331668890 and user = 291576 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Slow performance of isel · 6 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
425224969 | https://github.com/pydata/xarray/issues/2227#issuecomment-425224969 | https://api.github.com/repos/pydata/xarray/issues/2227 | MDEyOklzc3VlQ29tbWVudDQyNTIyNDk2OQ== | WeatherGod 291576 | 2018-09-27T20:05:05Z | 2018-09-27T20:05:05Z | CONTRIBUTOR | It would be ten files opened via xr.open_mfdataset() concatenated across a time dimension, each one looking like: ``` netcdf convect_gust_20180301_0000 { dimensions: latitude = 3502 ; longitude = 7002 ; variables: double latitude(latitude) ; latitude:_FillValue = NaN ; latitude:_Storage = "contiguous" ; latitude:_Endianness = "little" ; double longitude(longitude) ; longitude:_FillValue = NaN ; longitude:_Storage = "contiguous" ; longitude:_Endianness = "little" ; float gust(latitude, longitude) ; gust:_FillValue = NaNf ; gust:units = "m/s" ; gust:description = "gust winds" ; gust:_Storage = "chunked" ; gust:_ChunkSizes = 701, 1401 ; gust:_DeflateLevel = 8 ; gust:_Shuffle = "true" ; gust:_Endianness = "little" ; // global attributes: :start_date = "03/01/2018 00:00" ; :end_date = "03/01/2018 01:00" ; :interval = "half-open" ; :init_date = "02/28/2018 22:00" ; :history = "Created 2018-09-12 15:53:44.468144" ; :description = "Convective Downscaling, format V2.0" ; :_NCProperties = "version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1" ; :_SuperblockVersion = 0 ; :_IsNetcdf4 = 1 ; :_Format = "netCDF-4" ; ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of isel 331668890 | |
424795330 | https://github.com/pydata/xarray/issues/2227#issuecomment-424795330 | https://api.github.com/repos/pydata/xarray/issues/2227 | MDEyOklzc3VlQ29tbWVudDQyNDc5NTMzMA== | WeatherGod 291576 | 2018-09-26T17:06:44Z | 2018-09-26T17:06:44Z | CONTRIBUTOR | No, it does not make a difference. The example above peaks at around 5GB of memory (a bit much, but manageable). And it peaks similarly if we chunk it like you suggested. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of isel 331668890 | |
424485235 | https://github.com/pydata/xarray/issues/2227#issuecomment-424485235 | https://api.github.com/repos/pydata/xarray/issues/2227 | MDEyOklzc3VlQ29tbWVudDQyNDQ4NTIzNQ== | WeatherGod 291576 | 2018-09-25T20:14:02Z | 2018-09-25T20:14:02Z | CONTRIBUTOR | Yeah, it looks like if |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of isel 331668890 | |
424479421 | https://github.com/pydata/xarray/issues/2227#issuecomment-424479421 | https://api.github.com/repos/pydata/xarray/issues/2227 | MDEyOklzc3VlQ29tbWVudDQyNDQ3OTQyMQ== | WeatherGod 291576 | 2018-09-25T19:54:59Z | 2018-09-25T19:54:59Z | CONTRIBUTOR | Just for posterity, though, here is my simplified (working!) example: ``` import numpy as np import xarray as xr da = xr.DataArray(np.random.randn(10, 3000, 7000), dims=('time', 'latitude', 'longitude')) window = da.rolling(time=2).construct('win') indexes = window.argmax(dim='win') result = window.isel(win=indexes) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of isel 331668890 | |
424477465 | https://github.com/pydata/xarray/issues/2227#issuecomment-424477465 | https://api.github.com/repos/pydata/xarray/issues/2227 | MDEyOklzc3VlQ29tbWVudDQyNDQ3NzQ2NQ== | WeatherGod 291576 | 2018-09-25T19:48:20Z | 2018-09-25T19:48:20Z | CONTRIBUTOR | Huh, strange... I just tried a simplified version of what I was doing (particularly, no dask arrays), and everything worked fine. I'll have to investigate further. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of isel 331668890 | |
424470752 | https://github.com/pydata/xarray/issues/2227#issuecomment-424470752 | https://api.github.com/repos/pydata/xarray/issues/2227 | MDEyOklzc3VlQ29tbWVudDQyNDQ3MDc1Mg== | WeatherGod 291576 | 2018-09-25T19:27:28Z | 2018-09-25T19:27:28Z | CONTRIBUTOR | I am looking into a similar performance issue with isel, but it seems that the issue is that it is creating arrays that are much bigger than needed. For my multidimensional case (time/x/y/window), what should end up only taking a few hundred MB is spiking up to 10's of GB of used RAM. Don't know if this might be a possible source of performance issues. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of isel 331668890 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1