home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

6 rows where issue = 331668890 and user = 291576 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • WeatherGod · 6 ✖

issue 1

  • Slow performance of isel · 6 ✖

author_association 1

  • CONTRIBUTOR 6
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
425224969 https://github.com/pydata/xarray/issues/2227#issuecomment-425224969 https://api.github.com/repos/pydata/xarray/issues/2227 MDEyOklzc3VlQ29tbWVudDQyNTIyNDk2OQ== WeatherGod 291576 2018-09-27T20:05:05Z 2018-09-27T20:05:05Z CONTRIBUTOR

It would be ten files opened via xr.open_mfdataset() concatenated across a time dimension, each one looking like: ``` netcdf convect_gust_20180301_0000 { dimensions: latitude = 3502 ; longitude = 7002 ; variables: double latitude(latitude) ; latitude:_FillValue = NaN ; latitude:_Storage = "contiguous" ; latitude:_Endianness = "little" ; double longitude(longitude) ; longitude:_FillValue = NaN ; longitude:_Storage = "contiguous" ; longitude:_Endianness = "little" ; float gust(latitude, longitude) ; gust:_FillValue = NaNf ; gust:units = "m/s" ; gust:description = "gust winds" ; gust:_Storage = "chunked" ; gust:_ChunkSizes = 701, 1401 ; gust:_DeflateLevel = 8 ; gust:_Shuffle = "true" ; gust:_Endianness = "little" ;

// global attributes: :start_date = "03/01/2018 00:00" ; :end_date = "03/01/2018 01:00" ; :interval = "half-open" ; :init_date = "02/28/2018 22:00" ; :history = "Created 2018-09-12 15:53:44.468144" ; :description = "Convective Downscaling, format V2.0" ; :_NCProperties = "version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.1" ; :_SuperblockVersion = 0 ; :_IsNetcdf4 = 1 ; :_Format = "netCDF-4" ; ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Slow performance of isel 331668890
424795330 https://github.com/pydata/xarray/issues/2227#issuecomment-424795330 https://api.github.com/repos/pydata/xarray/issues/2227 MDEyOklzc3VlQ29tbWVudDQyNDc5NTMzMA== WeatherGod 291576 2018-09-26T17:06:44Z 2018-09-26T17:06:44Z CONTRIBUTOR

No, it does not make a difference. The example above peaks at around 5GB of memory (a bit much, but manageable). And it peaks similarly if we chunk it like you suggested.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Slow performance of isel 331668890
424485235 https://github.com/pydata/xarray/issues/2227#issuecomment-424485235 https://api.github.com/repos/pydata/xarray/issues/2227 MDEyOklzc3VlQ29tbWVudDQyNDQ4NTIzNQ== WeatherGod 291576 2018-09-25T20:14:02Z 2018-09-25T20:14:02Z CONTRIBUTOR

Yeah, it looks like if da is backed by a dask array, and you do a .isel(win=window.compute()) because otherwise isel barfs on dask indexers, it seems, then the memory usage shoots through the roof. Note that in my case, the dask chunks are (1, 3000, 7000). If I do a window.load() prior to window.isel(), then the memory usage is perfectly reasonable.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Slow performance of isel 331668890
424479421 https://github.com/pydata/xarray/issues/2227#issuecomment-424479421 https://api.github.com/repos/pydata/xarray/issues/2227 MDEyOklzc3VlQ29tbWVudDQyNDQ3OTQyMQ== WeatherGod 291576 2018-09-25T19:54:59Z 2018-09-25T19:54:59Z CONTRIBUTOR

Just for posterity, though, here is my simplified (working!) example: ``` import numpy as np import xarray as xr

da = xr.DataArray(np.random.randn(10, 3000, 7000), dims=('time', 'latitude', 'longitude')) window = da.rolling(time=2).construct('win') indexes = window.argmax(dim='win') result = window.isel(win=indexes) ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Slow performance of isel 331668890
424477465 https://github.com/pydata/xarray/issues/2227#issuecomment-424477465 https://api.github.com/repos/pydata/xarray/issues/2227 MDEyOklzc3VlQ29tbWVudDQyNDQ3NzQ2NQ== WeatherGod 291576 2018-09-25T19:48:20Z 2018-09-25T19:48:20Z CONTRIBUTOR

Huh, strange... I just tried a simplified version of what I was doing (particularly, no dask arrays), and everything worked fine. I'll have to investigate further.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Slow performance of isel 331668890
424470752 https://github.com/pydata/xarray/issues/2227#issuecomment-424470752 https://api.github.com/repos/pydata/xarray/issues/2227 MDEyOklzc3VlQ29tbWVudDQyNDQ3MDc1Mg== WeatherGod 291576 2018-09-25T19:27:28Z 2018-09-25T19:27:28Z CONTRIBUTOR

I am looking into a similar performance issue with isel, but it seems that the issue is that it is creating arrays that are much bigger than needed. For my multidimensional case (time/x/y/window), what should end up only taking a few hundred MB is spiking up to 10's of GB of used RAM. Don't know if this might be a possible source of performance issues.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Slow performance of isel 331668890

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 16.378ms · About: xarray-datasette