home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where issue = 330859619 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 2

  • fujiisoup 3
  • shoyer 1

issue 1

  • implement interp_like · 4 ✖

author_association 1

  • MEMBER 4
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
398596893 https://github.com/pydata/xarray/pull/2222#issuecomment-398596893 https://api.github.com/repos/pydata/xarray/issues/2222 MDEyOklzc3VlQ29tbWVudDM5ODU5Njg5Mw== fujiisoup 6815844 2018-06-20T01:39:36Z 2018-06-20T01:39:36Z MEMBER

Thanks for the review :) merged.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  implement interp_like 330859619
396555289 https://github.com/pydata/xarray/pull/2222#issuecomment-396555289 https://api.github.com/repos/pydata/xarray/issues/2222 MDEyOklzc3VlQ29tbWVudDM5NjU1NTI4OQ== fujiisoup 6815844 2018-06-12T11:21:05Z 2018-06-12T11:21:05Z MEMBER

Do you have an example?

We raise a TypeError in the following example, because the dataset has datetime-type dimension.

```python In [3]: ds = xr.tutorial.load_dataset('air_temperature')

In [4]: ds Out[4]: <xarray.Dataset> Dimensions: (lat: 25, lon: 53, time: 2920) Coordinates: * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 55.0 52.5 ... * lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 215.0 217.5 ... * time (time) datetime64[ns] 2013-01-01 2013-01-01T06:00:00 ... Data variables: air (time, lat, lon) float32 241.2 242.5 243.5 244.0 244.09999 ... Attributes: Conventions: COARDS title: 4x daily NMC reanalysis (1948) description: Data is from NMC initialized reanalysis\n(4x/day). These a... platform: Model references: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly...

In [5]: ds.interp_like(ds.isel(lat=[0, 1, 2])) # -> TypeError ```

It might make sense to interpolate on numeric dimensions, and directly reindex on non-numeric dimensions.

I agree for the object type dimension, such as string, reindex is be appropriate and users might expect it. But for datetime dimension, I think users expect the interpolation rather than reindexing.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  implement interp_like 330859619
396429505 https://github.com/pydata/xarray/pull/2222#issuecomment-396429505 https://api.github.com/repos/pydata/xarray/issues/2222 MDEyOklzc3VlQ29tbWVudDM5NjQyOTUwNQ== shoyer 1217238 2018-06-12T00:39:57Z 2018-06-12T00:39:57Z MEMBER

Slightly wondering the case when an object has non-numeric dimensions. The current implementation raises TypeError, even when the target destination is just a subset of the current one.

Do you have an example?

It might make sense to interpolate on numeric dimensions, and directly reindex on non-numeric dimensions.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  implement interp_like 330859619
395945891 https://github.com/pydata/xarray/pull/2222#issuecomment-395945891 https://api.github.com/repos/pydata/xarray/issues/2222 MDEyOklzc3VlQ29tbWVudDM5NTk0NTg5MQ== fujiisoup 6815844 2018-06-09T06:53:28Z 2018-06-09T06:53:28Z MEMBER

Slightly wondering the case when an object has non-numeric dimensions. The current implementation raises TypeError, even when the target destination is just a subset of the current one.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  implement interp_like 330859619

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 24.428ms · About: xarray-datasette