issue_comments
1 row where issue = 329066551 and user = 206773 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- xarray.Dataset.sel(time='2007-04-12') returns unexpected time dimension · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 544864012 | https://github.com/pydata/xarray/issues/2213#issuecomment-544864012 | https://api.github.com/repos/pydata/xarray/issues/2213 | MDEyOklzc3VlQ29tbWVudDU0NDg2NDAxMg== | forman 206773 | 2019-10-22T08:46:46Z | 2019-10-22T12:09:10Z | NONE |
Nope, look at the screenshot again, the dimension is zero. The very similar issue (if not same) remains and should be considered a bug:
If I now use
However, if I use
EDIT It seems that if I create the EDIT 2 Root cause may be related to Pandas indexing using strings that encode different accuracy / resolution: http://pandas-docs.github.io/pandas-docs-travis/user_guide/timeseries.html#slice-vs-exact-match. Very contra-intuitive. Output of
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray.Dataset.sel(time='2007-04-12') returns unexpected time dimension 329066551 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);



user 1