issue_comments
4 rows where issue = 324032926 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- groupby beahaviour w.r.t. non principal coordinates · 4 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 747391520 | https://github.com/pydata/xarray/issues/2148#issuecomment-747391520 | https://api.github.com/repos/pydata/xarray/issues/2148 | MDEyOklzc3VlQ29tbWVudDc0NzM5MTUyMA== | aurghs 35919497 | 2020-12-17T11:47:44Z | 2020-12-17T11:47:44Z | COLLABORATOR | I think this has been fixed at some point. it can be closed. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
groupby beahaviour w.r.t. non principal coordinates 324032926 | |
| 540187230 | https://github.com/pydata/xarray/issues/2148#issuecomment-540187230 | https://api.github.com/repos/pydata/xarray/issues/2148 | MDEyOklzc3VlQ29tbWVudDU0MDE4NzIzMA== | dcherian 2448579 | 2019-10-09T20:45:58Z | 2019-10-09T20:45:58Z | MEMBER | Everything but this last example works as expected ``` arr = xr.DataArray( np.ones((5, 2)), dims=('x', 'y'), coords={ 'x': ('x', np.array([1, 1, 1, 2, 2])), 'x1': ('x', np.array([1, 1, 1, 2, 2])), 'x2': ('x', np.array([1, 2, 3, 4, 5])), } ) arr.groupby(xr.DataArray([1,1,1,2,2], dims=('x'), name='y')).mean('x') <xarray.DataArray (y: 4)> array([1., 1., 1., 1.]) Coordinates: * y (y) int64 1 2 ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
groupby beahaviour w.r.t. non principal coordinates 324032926 | |
| 389935163 | https://github.com/pydata/xarray/issues/2148#issuecomment-389935163 | https://api.github.com/repos/pydata/xarray/issues/2148 | MDEyOklzc3VlQ29tbWVudDM4OTkzNTE2Mw== | aurghs 35919497 | 2018-05-17T16:52:16Z | 2018-05-17T17:27:07Z | COLLABORATOR | The coordinates are grouped correctly: ```python list(arr.groupby('x')) [(1, <xarray.DataArray (x: 3)> array([1., 1., 1.]) Coordinates: * x (x) int64 1 1 1 x2 (x) int64 1 2 3), (2, <xarray.DataArray (x: 2)> array([1., 1.]) Coordinates: * x (x) int64 2 2 x2 (x) int64 4 5)] ``` I think the grouping make sense. But once the groups are collapsed with some operation, I'm not sure that can be found a corresponding meaningful operation to apply to the grouped coordinates. In the following cases the mean after gourpby() works as expected: ``` arr = xr.DataArray( np.ones(5), dims=('x',), coords={ 'x': ('x', np.array([1, 1, 1, 2, 2])), 'x1': ('x', np.array([1, 1, 1, 2, 2])), 'x2': ('x', np.array([1, 2, 3, 4, 5])),
) arr.groupby('x1').mean('x') <xarray.DataArray (x1: 2)> array([1., 1.]) Coordinates: * x1 (x1) int64 1 2 arr.groupby((xr.DataArray([1,1,1,2,2], dims=('x'), name='x3'))).mean('x') <xarray.DataArray (x3: 2)>
array([1., 1.])
Coordinates:
* x3 (x3) int64 1 2
<xarray.DataArray (x: 2)> array([1., 1.]) Coordinates: * x (x) int64 1 2 x1 (x) int64 1 1 1 2 2 x2 (x) int64 1 2 3 4 5 ``` If I try to use an other dimension name we obtain again an strange behaviour: ```python arr = xr.DataArray( np.ones((5, 2)), dims=('x', 'y'), coords={ 'x': ('x', np.array([1, 1, 1, 2, 2])), 'x1': ('x', np.array([1, 1, 1, 2, 2])), 'x2': ('x', np.array([1, 2, 3, 4, 5])), } ) arr.groupby(xr.DataArray([1,1,1,2,2], dims=('x'), name='y')).mean('x') <xarray.DataArray (y: 4)> array([1., 1., 1., 1.]) Coordinates: * y (y) int64 1 2 ``` In this case probably it should raise an error. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
groupby beahaviour w.r.t. non principal coordinates 324032926 | |
| 389885906 | https://github.com/pydata/xarray/issues/2148#issuecomment-389885906 | https://api.github.com/repos/pydata/xarray/issues/2148 | MDEyOklzc3VlQ29tbWVudDM4OTg4NTkwNg== | fmaussion 10050469 | 2018-05-17T14:27:19Z | 2018-05-17T14:27:19Z | MEMBER | Yes, definitely looks like a bug. I wonder if aggregating the non-dimension coordinate would lead to meaningful results in some cases, but I guess that in most cases it wouldn't. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
groupby beahaviour w.r.t. non principal coordinates 324032926 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 3