issue_comments
1 row where issue = 322091500 and user = 2443309 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- time array with mixture of types decoded from non-standard calendar · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
388195123 | https://github.com/pydata/xarray/issues/2116#issuecomment-388195123 | https://api.github.com/repos/pydata/xarray/issues/2116 | MDEyOklzc3VlQ29tbWVudDM4ODE5NTEyMw== | jhamman 2443309 | 2018-05-10T21:42:08Z | 2018-05-10T21:42:08Z | MEMBER | @thenaomig - thanks for the report. Can you confirm that all the files you are opening have the same time format (e.g. units)? It may also be worth trying your example with the @spencerkclark's CFTimeIndex (https://github.com/pydata/xarray/pull/1252). I think your example may work much better with the following approach: ```Python with xr.set_options(enable_cftimeindex=True): precip = xy.open_mfdataset(dataDir+'prc_day_HadGEM2-ES_rcp85_r1i1p1_*.nc') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
time array with mixture of types decoded from non-standard calendar 322091500 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1