issue_comments
3 rows where issue = 310547057 and user = 25473287 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- simple command line interface for xarray · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 378107700 | https://github.com/pydata/xarray/issues/2034#issuecomment-378107700 | https://api.github.com/repos/pydata/xarray/issues/2034 | MDEyOklzc3VlQ29tbWVudDM3ODEwNzcwMA== | JiaweiZhuang 25473287 | 2018-04-03T02:26:41Z | 2018-04-03T02:26:41Z | NONE | And this JupyterLab approach will be way better than ncview... Say, you can easily compare multiple NetCDF files by subdividing panels. |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
simple command line interface for xarray 310547057 | |
| 378106951 | https://github.com/pydata/xarray/issues/2034#issuecomment-378106951 | https://api.github.com/repos/pydata/xarray/issues/2034 | MDEyOklzc3VlQ29tbWVudDM3ODEwNjk1MQ== | JiaweiZhuang 25473287 | 2018-04-03T02:21:33Z | 2018-04-03T02:21:33Z | NONE |
Seems like JupyterLab is a perfect fit for this purpose. See this geojson extension for example. Notice that you can view a It should be possible to view a NetCDF file directly in JupyterLab, with an extension built on top of xarray+GeoViews. @philippjfr should have more insights on this... |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
simple command line interface for xarray 310547057 | |
| 378082894 | https://github.com/pydata/xarray/issues/2034#issuecomment-378082894 | https://api.github.com/repos/pydata/xarray/issues/2034 | MDEyOklzc3VlQ29tbWVudDM3ODA4Mjg5NA== | JiaweiZhuang 25473287 | 2018-04-02T23:45:40Z | 2018-04-03T02:04:52Z | NONE |
GeoViews can make interactive plots of xarray data. There's an example. An even more straightforward and customizable way is matplotlib + Jupyter Interact. It can easily replicate all ncview's functionalities. |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
simple command line interface for xarray 310547057 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1