issue_comments
3 rows where issue = 297560256 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- cartesian product of coordinates and using it to index / fill empty dataset · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 396738702 | https://github.com/pydata/xarray/issues/1914#issuecomment-396738702 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM5NjczODcwMg== | shoyer 1217238 | 2018-06-12T21:23:09Z | 2018-06-12T21:23:09Z | MEMBER | xyzpy (by @jcmgray) looks like it might be a nice way to solve this problem, e.g., see http://xyzpy.readthedocs.io/en/latest/examples/complex%20output%20example.html |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 | |
| 367578341 | https://github.com/pydata/xarray/issues/1914#issuecomment-367578341 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM2NzU3ODM0MQ== | shoyer 1217238 | 2018-02-22T06:13:58Z | 2018-02-22T06:13:58Z | MEMBER | This issue has brought up a lot of the same issues: https://github.com/pydata/xarray/issues/1773 Clearly, we need better documentation here at the very least. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 | |
| 366884882 | https://github.com/pydata/xarray/issues/1914#issuecomment-366884882 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM2Njg4NDg4Mg== | shoyer 1217238 | 2018-02-20T07:02:37Z | 2018-02-20T07:02:37Z | MEMBER |
data = xr.Dataset(coords={'x': np.linspace(-1, 1), 'y': np.linspace(0, 10), 'a': 1, 'b': 5}) def some_function(x, y): return float(x) * float(y) xr.apply_ufunc(some_function, data['x'], data['y'], vectorize=True)
You can even do this with dask arrays if you set That said, it does feel like there's some missing functionality here for the xarray equivalent of |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1