issue_comments
4 rows where issue = 29136905 and user = 8982598 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Implement DataArray.idxmax() · 4 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 276540506 | https://github.com/pydata/xarray/issues/60#issuecomment-276540506 | https://api.github.com/repos/pydata/xarray/issues/60 | MDEyOklzc3VlQ29tbWVudDI3NjU0MDUwNg== | jcmgray 8982598 | 2017-02-01T00:43:52Z | 2017-02-01T00:43:52Z | CONTRIBUTOR | Would using Ah yes true. I was slightly anticipating e.g. filling with NaT if the |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement DataArray.idxmax() 29136905 | |
| 276537615 | https://github.com/pydata/xarray/issues/60#issuecomment-276537615 | https://api.github.com/repos/pydata/xarray/issues/60 | MDEyOklzc3VlQ29tbWVudDI3NjUzNzYxNQ== | jcmgray 8982598 | 2017-02-01T00:26:24Z | 2017-02-01T00:26:24Z | CONTRIBUTOR | Ah yes both ways are working now, thanks. Just had a little play around with timings, and this seems like a reasonably quick way to achieve correct NaN behaviour: ```python def xr_idxmax(obj, dim): sig = ([(dim,), (dim,)], [()]) kwargs = {'axis': -1}
``` i.e. originally replace all NaN values with -Inf, use the usual |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement DataArray.idxmax() 29136905 | |
| 276232678 | https://github.com/pydata/xarray/issues/60#issuecomment-276232678 | https://api.github.com/repos/pydata/xarray/issues/60 | MDEyOklzc3VlQ29tbWVudDI3NjIzMjY3OA== | jcmgray 8982598 | 2017-01-31T00:06:02Z | 2017-01-31T00:06:02Z | CONTRIBUTOR | So I thought Regarding edge cases: multiple maxes is presumably fine as long as user is aware it just takes the first.
However, |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement DataArray.idxmax() 29136905 | |
| 275778443 | https://github.com/pydata/xarray/issues/60#issuecomment-275778443 | https://api.github.com/repos/pydata/xarray/issues/60 | MDEyOklzc3VlQ29tbWVudDI3NTc3ODQ0Mw== | jcmgray 8982598 | 2017-01-27T21:24:31Z | 2017-01-27T21:24:31Z | CONTRIBUTOR | Just as I am interested in having this functionality, and the new ```python from wherever import argmax, take # numpy or dask def gufunc_idxmax(x, y, axis=None): indx = argmax(x, axis) return take(y, indx) def idxmax(obj, dim): sig = ([(dim,), (dim,)], [()]) kwargs = {'axis': -1} return apply_ufunc(gufunc_idxmin, obj, obj[dim], signature=sig, kwargs=kwargs, dask_array='allowed') ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement DataArray.idxmax() 29136905 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1