issue_comments
2 rows where issue = 28262599 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- ENH: NETCDF4 in pandas · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 41122172 | https://github.com/pydata/xarray/issues/18#issuecomment-41122172 | https://api.github.com/repos/pydata/xarray/issues/18 | MDEyOklzc3VlQ29tbWVudDQxMTIyMTcy | shoyer 1217238 | 2014-04-23T03:54:59Z | 2014-04-23T03:54:59Z | MEMBER | I'm going to close this, given that pandas doesn't currently have appropriate data structures for representing arbitrary dimensional NetCDF variables. These data structures (N-dimensional labeled arrays like You can represent higher dimensional arrays as a That said, I am not opposed to integrating some or all of xray into pandas -- but that's a much bigger discussion. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
ENH: NETCDF4 in pandas 28262599 | |
| 36039528 | https://github.com/pydata/xarray/issues/18#issuecomment-36039528 | https://api.github.com/repos/pydata/xarray/issues/18 | MDEyOklzc3VlQ29tbWVudDM2MDM5NTI4 | akleeman 514053 | 2014-02-25T18:16:38Z | 2014-02-25T18:16:38Z | CONTRIBUTOR | @jreback I'll spend some time getting a better feel for how/if we could push some of the backend into pandas' HDFStore. Certainly, we'd like to leverage other more powerful packages (pandas, numpy) as much as possible. Thanks for the suggestion. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
ENH: NETCDF4 in pandas 28262599 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 2