home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 280899335 and user = 1217238 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • shoyer · 3 ✖

issue 1

  • Use of Xarray instead of np.meshgrid · 3 ✖

author_association 1

  • MEMBER 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
350879291 https://github.com/pydata/xarray/issues/1773#issuecomment-350879291 https://api.github.com/repos/pydata/xarray/issues/1773 MDEyOklzc3VlQ29tbWVudDM1MDg3OTI5MQ== shoyer 1217238 2017-12-11T22:27:58Z 2017-12-11T22:27:58Z MEMBER

It seems that sympy functions returned by lambdfy may not work on arbitrary dimensional inputs, or might not follow broadcasting rules. The workaround might be something like: ```python def vector_func_wrapper(dx, dy, dz, dt): dx, dy, dz, dt = np.broadcast_arrays(dx, dy, dz, dt) # explicitly broadcast args = [a.ravel() for a in [dx, dy, dz, dt]] # convert everything to a vector return vector_funcN(*args).reshape(dx.shape)

xarray.apply_ufunc(vector_func_wrapper, dx, dy, dz, dt) ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Use of Xarray instead of np.meshgrid 280899335
350821050 https://github.com/pydata/xarray/issues/1773#issuecomment-350821050 https://api.github.com/repos/pydata/xarray/issues/1773 MDEyOklzc3VlQ29tbWVudDM1MDgyMTA1MA== shoyer 1217238 2017-12-11T18:54:03Z 2017-12-11T18:54:03Z MEMBER

Broadcast allows a variadic number of arguments, so you can write something like: python gx, dy, gz, gt =xr.broadcast(dx, dy, dz, dt)

I'm not very familiar with sympy's lambdify, but I think something like xarray.apply_ufunc(vector_funcN, dx, dy, dz, dt) should work (where dx, dy, dz and dt are all xarray objects, even without manual broadcasting).

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Use of Xarray instead of np.meshgrid 280899335
350806352 https://github.com/pydata/xarray/issues/1773#issuecomment-350806352 https://api.github.com/repos/pydata/xarray/issues/1773 MDEyOklzc3VlQ29tbWVudDM1MDgwNjM1Mg== shoyer 1217238 2017-12-11T18:02:39Z 2017-12-11T18:02:39Z MEMBER

If you make each of your arrays xAxisDomian an xarray.DataArray with appropriate dimensions, you can use xarray.broadcast() to convert all of them to common coordinates. xarray.apply_ufunc may also help.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Use of Xarray instead of np.meshgrid 280899335

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 411.991ms · About: xarray-datasette