issue_comments
1 row where issue = 245624267 and user = 306380 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- lazily load dask arrays to dask data frames by calling to_dask_dataframe · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
338392039 | https://github.com/pydata/xarray/pull/1489#issuecomment-338392039 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDMzODM5MjAzOQ== | mrocklin 306380 | 2017-10-21T12:47:34Z | 2017-10-21T12:47:34Z | MEMBER | I think that you would want to rechunk the dask.array so that its chunks align with the outputs divisions of the dask.dataframe. For example if you have a 2d array and are partitioning along the x-axis then you will want to align the array so that there is no chunking along the y axis. In this case |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1