issue_comments
1 row where issue = 236347050 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Feature/benchmark · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 308932098 | https://github.com/pydata/xarray/pull/1457#issuecomment-308932098 | https://api.github.com/repos/pydata/xarray/issues/1457 | MDEyOklzc3VlQ29tbWVudDMwODkzMjA5OA== | max-sixty 5635139 | 2017-06-16T04:45:49Z | 2017-06-16T04:51:14Z | MEMBER | This is a great start! Thanks @jhamman ! Our most common performance problems are handling pandas 'oddities', like non-standard indexes. Generally when an operation that is generally vectorized becomes un-vectorized, and starts looping in python. But that's probably not a big use case for most. What are the instances others have seen performance issues? Are there ever issues with the standard transform operations, such as (addendum, I just saw the comments above): I think there's some real benefit in benchmarks to ensure we don't add code that slow down operations by an order of magnitude slower - i.e. outside the bounds of reasonable error. That's broader than optimizing around them, particularly since xarray is all python, and shouldn't be doing performance intensive work internally. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Feature/benchmark 236347050 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1