home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where issue = 231308952 and user = 6815844 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • fujiisoup · 4 ✖

issue 1

  • scalar_level in MultiIndex · 4 ✖

author_association 1

  • MEMBER 4
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
454165639 https://github.com/pydata/xarray/pull/1426#issuecomment-454165639 https://api.github.com/repos/pydata/xarray/issues/1426 MDEyOklzc3VlQ29tbWVudDQ1NDE2NTYzOQ== fujiisoup 6815844 2019-01-14T21:20:27Z 2019-01-14T21:20:27Z MEMBER

I'll close this for the recent discussion about MultiIndex

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  scalar_level in MultiIndex 231308952
309268208 https://github.com/pydata/xarray/pull/1426#issuecomment-309268208 https://api.github.com/repos/pydata/xarray/issues/1426 MDEyOklzc3VlQ29tbWVudDMwOTI2ODIwOA== fujiisoup 6815844 2017-06-18T10:11:33Z 2017-06-18T10:11:33Z MEMBER

@benbovy Sorry for my late reply.

I think I like your proposal, which bundles multiple concepts in xarray such as MultiIndex and multi-dimensional coordinates into one, which may result in simpler API. But actually I don't yet fully imagine how your proposal works with multi-dimensional coordinates. (maybe because I am not accustomed with multi-dimensional coordinates very well.)

Currently, 'rasm' example is like python In [1]: import xarray as xr In [2]: xr.tutorial.load_dataset('rasm', decode_times=False) Out[2]: <xarray.Dataset> Dimensions: (time: 36, x: 275, y: 205) Coordinates: * time (time) float64 7.226e+05 7.226e+05 7.227e+05 7.227e+05 ... xc (y, x) float64 189.2 189.4 189.6 189.7 189.9 190.1 190.2 190.4 ... yc (y, x) float64 16.53 16.78 17.02 17.27 17.51 17.76 18.0 18.25 ... Dimensions without coordinates: x, y Data variables: Tair (time, y, x) float64 nan nan nan nan nan nan nan nan nan nan ... Attributes: ...

Does your proposal (automatically) change this like python <xarray.Dataset> Dimensions: (time: 36, xy: 56375) Coordinates: * time (time) float64 7.226e+05 7.226e+05 7.227e+05 7.227e+05 ... xc (xy) float64 189.2 189.0 188.7 188.5 188.2 187.9 187.7 187.4 ... yc (xy) float64 16.53 16.69 16.85 17.01 17.17 17.32 17.48 17.63 ... * xy (xy) SuperIndex - x (xy) int64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... - y (xy) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... Data variables: Tair (time, xy) float64 nan nan nan nan nan nan nan nan nan nan nan ... Attributes: ... ?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  scalar_level in MultiIndex 231308952
305062228 https://github.com/pydata/xarray/pull/1426#issuecomment-305062228 https://api.github.com/repos/pydata/xarray/issues/1426 MDEyOklzc3VlQ29tbWVudDMwNTA2MjIyOA== fujiisoup 6815844 2017-05-31T02:12:13Z 2017-05-31T02:12:13Z MEMBER

@shoyer I personally think 2 is more intuitive for users, because it might be difficult to distinguish python <xarray.Dataset> Dimensions: (yx: 6) Coordinates: y (yx) object 'a' 'a' 'a' 'b' 'b' 'b' Data variables: foo (yx) int64 1 2 3 4 5 6 (which may be generated by indexing from x in your example) from python <xarray.Dataset> Dimensions: (y: 6) Coordinates: * y (y) object 'a' 'a' 'a' 'b' 'b' 'b' Data variables: foo (y) int64 1 2 3 4 5 6 What is the possible confusion if we adopt 2?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  scalar_level in MultiIndex 231308952
304902053 https://github.com/pydata/xarray/pull/1426#issuecomment-304902053 https://api.github.com/repos/pydata/xarray/issues/1426 MDEyOklzc3VlQ29tbWVudDMwNDkwMjA1Mw== fujiisoup 6815844 2017-05-30T14:47:36Z 2017-05-30T14:47:36Z MEMBER

@shoyer Thanks for the comment.

It occurs to me that if we had full support for indexing on coordinate levels, we might not need a notion of a "MultiIndex" in the public API at all.

Actually I am not yet fully comfortable with my implementation, and I like your idea as this might be much cleaner and simpler than mine.

If my understanding is correct, does it mean that we will support ds.sel(x='a'), ds.isel(x=[0, 1]) and ds.mean(dim='x') with your example data? Will it raise an Error if Coordinate is more than 1 dimensional? How about ds.sel(x='a', y=[1, 2])?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  scalar_level in MultiIndex 231308952

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 230.34ms · About: xarray-datasette