issue_comments
3 rows where issue = 223440405 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- open_mfdataset and add time dimension · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
296274069 | https://github.com/pydata/xarray/issues/1380#issuecomment-296274069 | https://api.github.com/repos/pydata/xarray/issues/1380 | MDEyOklzc3VlQ29tbWVudDI5NjI3NDA2OQ== | snowman2 8699967 | 2017-04-21T18:49:57Z | 2017-04-21T19:44:00Z | CONTRIBUTOR | Thank you @spencerahill and @shoyer. That was brilliant. Here is the solution: ```python path_to_files = '*.grib2' def extract_date(ds): for var in ds.variables: if 'initial_time' in ds[var].attrs.keys(): grid_time = pd.to_datetime(ds[var].attrs['initial_time'], format="%m/%d/%Y (%H:%M)") if 'forecast_time' in ds[var].attrs.keys(): time_units = 'h' if 'forecast_time_units' in ds[var].attrs.keys(): time_units = str(ds[var].attrs['forecast_time_units'][0]) grid_time += np.timedelta64(int(ds[var].attrs['forecast_time'][0]), time_units)
with xr.open_mfdataset(path_to_files, concat_dim='time', preprocess=extract_date, engine='pynio') as xd: print(xd) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset and add time dimension 223440405 | |
296260389 | https://github.com/pydata/xarray/issues/1380#issuecomment-296260389 | https://api.github.com/repos/pydata/xarray/issues/1380 | MDEyOklzc3VlQ29tbWVudDI5NjI2MDM4OQ== | shoyer 1217238 | 2017-04-21T17:57:07Z | 2017-04-21T17:57:07Z | MEMBER | You can use the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset and add time dimension 223440405 | |
296253682 | https://github.com/pydata/xarray/issues/1380#issuecomment-296253682 | https://api.github.com/repos/pydata/xarray/issues/1380 | MDEyOklzc3VlQ29tbWVudDI5NjI1MzY4Mg== | spencerahill 6200806 | 2017-04-21T17:29:30Z | 2017-04-21T17:29:30Z | CONTRIBUTOR | open_mfdataset has a 'concat_dim' optional keyword argument where you can specify the name of a new dimension that you want to concatenate your files over. You can read more about this in the API reference on open_mfdataset. You could then overwrite the coordinate of that new dimension with your desired time coordinate. Does that help? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset and add time dimension 223440405 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3