issue_comments
1 row where issue = 221858543 and user = 4998171 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Sparse arrays · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
355383374 | https://github.com/pydata/xarray/issues/1375#issuecomment-355383374 | https://api.github.com/repos/pydata/xarray/issues/1375 | MDEyOklzc3VlQ29tbWVudDM1NTM4MzM3NA== | lbybee 4998171 | 2018-01-04T19:59:28Z | 2018-01-04T19:59:28Z | NONE | I'm interested to see if there have been any developments on this. I currently have an application where I'm working with multiple dask arrays, some of which are sparse (text data). It'd be worth my time to move my project to xarray, so I'm be interested in contributing something here if there is a need. |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sparse arrays 221858543 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1