home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 221858543 and user = 1200058 sorted by updated_at descending

✖
✖
✖

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • Hoeze · 3 ✖

issue 1

  • Sparse arrays · 3 ✖

author_association 1

  • NONE 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
402699810 https://github.com/pydata/xarray/issues/1375#issuecomment-402699810 https://api.github.com/repos/pydata/xarray/issues/1375 MDEyOklzc3VlQ29tbWVudDQwMjY5OTgxMA== Hoeze 1200058 2018-07-05T12:02:30Z 2018-07-05T12:02:30Z NONE

How should these sparse arrays get stored in NetCDF4? I know that NetCDF4 has some conventions how to store sparse data, but do we have to implement our own conversion mechanisms for each sparse type?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Sparse arrays 221858543
402699290 https://github.com/pydata/xarray/issues/1375#issuecomment-402699290 https://api.github.com/repos/pydata/xarray/issues/1375 MDEyOklzc3VlQ29tbWVudDQwMjY5OTI5MA== Hoeze 1200058 2018-07-05T12:00:15Z 2018-07-05T12:00:15Z NONE

Would it be an option to use dask's sparse support? http://dask.pydata.org/en/latest/array-sparse.html This way xarray could let dask do the main work.

Currently I load everything into a dask array by hand and pass this dask array to xarray. This works pretty good.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Sparse arrays 221858543
395009307 https://github.com/pydata/xarray/issues/1375#issuecomment-395009307 https://api.github.com/repos/pydata/xarray/issues/1375 MDEyOklzc3VlQ29tbWVudDM5NTAwOTMwNw== Hoeze 1200058 2018-06-06T09:39:43Z 2018-06-06T09:41:28Z NONE

I'd know a project which could make perfect use of xarray, if it would support sparse tensors: https://github.com/theislab/anndata

Currently I have to work with both xarray and anndata to store counts in sparse arrays separate from other depending data which is a little bit annoying :)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Sparse arrays 221858543

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 5358.548ms · About: xarray-datasette
  • Sort ascending
  • Sort descending
  • Facet by this
  • Hide this column
  • Show all columns
  • Show not-blank rows