home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where issue = 212561278 and user = 1360241 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • najascutellatus · 2 ✖

issue 1

  • open_mfdataset() significantly slower on 0.9.1 vs. 0.8.2 · 2 ✖

author_association 1

  • NONE 2
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
291512017 https://github.com/pydata/xarray/issues/1301#issuecomment-291512017 https://api.github.com/repos/pydata/xarray/issues/1301 MDEyOklzc3VlQ29tbWVudDI5MTUxMjAxNw== najascutellatus 1360241 2017-04-04T14:11:08Z 2017-04-04T14:11:08Z NONE

@rabernat This data is computed on demand from the OOI (http://oceanobservatories.org/cyberinfrastructure-technology/). Datasets can be massive and so they seem to be split up in ~500 MB files when data gets too big. That is why obs changes for each file. Would having obs be consistent across all files potentially make open_mfdataset faster?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  open_mfdataset() significantly slower on 0.9.1 vs. 0.8.2 212561278
286212647 https://github.com/pydata/xarray/issues/1301#issuecomment-286212647 https://api.github.com/repos/pydata/xarray/issues/1301 MDEyOklzc3VlQ29tbWVudDI4NjIxMjY0Nw== najascutellatus 1360241 2017-03-13T19:12:13Z 2017-03-13T19:12:13Z NONE

Data: Five files that are approximately 450 MB each.

venv1 dask 0.13.0 py27_0 conda-forge xarray 0.8.2 py27_0 conda-forge 1.51642394066 seconds to load using open_mfdataset

venv2: dask 0.13.0 py27_0 conda-forge xarray 0.9.1 py27_0 conda-forge 279.011202097 seconds to load using open_mfdataset

I ran the same code in the OP on two conda envs with the same version of dask but two different versions of xarray. There was a significant difference in load time between the two conda envs.

I've posted the data on my work site if anyone wants to double check: https://marine.rutgers.edu/~michaesm/netcdf/data/

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  open_mfdataset() significantly slower on 0.9.1 vs. 0.8.2 212561278

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 6558.953ms · About: xarray-datasette