issue_comments
1 row where issue = 207587161 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- GroupBy like API for resample · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
280122805 | https://github.com/pydata/xarray/issues/1269#issuecomment-280122805 | https://api.github.com/repos/pydata/xarray/issues/1269 | MDEyOklzc3VlQ29tbWVudDI4MDEyMjgwNQ== | shoyer 1217238 | 2017-02-15T20:04:07Z | 2017-02-15T20:04:07Z | MEMBER | I think this could be done with minimal GroupBy subclasses to supply the default dimension argument for aggregation functions. All the machinery on groupby should already be there. On Wed, Feb 15, 2017 at 10:59 AM Daniel Rothenberg notifications@github.com wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
GroupBy like API for resample 207587161 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1