issue_comments
2 rows where issue = 201021909 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- __repr__ of 2D coordinates · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 273116405 | https://github.com/pydata/xarray/issues/1211#issuecomment-273116405 | https://api.github.com/repos/pydata/xarray/issues/1211 | MDEyOklzc3VlQ29tbWVudDI3MzExNjQwNQ== | fmaussion 10050469 | 2017-01-17T11:37:12Z | 2017-01-17T11:37:12Z | MEMBER |
Agreed, I was being picky. Closing this. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
__repr__ of 2D coordinates 201021909 | |
| 272989002 | https://github.com/pydata/xarray/issues/1211#issuecomment-272989002 | https://api.github.com/repos/pydata/xarray/issues/1211 | MDEyOklzc3VlQ29tbWVudDI3Mjk4OTAwMg== | shoyer 1217238 | 2017-01-17T00:03:31Z | 2017-01-17T00:03:31Z | MEMBER | I'm definitely open to alternatives, but the flattened repr does have the virtue of being one of the simplest and most readable options for displaying N-d arrays on a single line. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
__repr__ of 2D coordinates 201021909 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 2