issue_comments
1 row where issue = 199188476 and user = 6130352 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Use masked arrays while preserving int · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 605697466 | https://github.com/pydata/xarray/issues/1194#issuecomment-605697466 | https://api.github.com/repos/pydata/xarray/issues/1194 | MDEyOklzc3VlQ29tbWVudDYwNTY5NzQ2Ng== | eric-czech 6130352 | 2020-03-29T20:37:29Z | 2020-03-29T20:37:29Z | NONE | I agree, I have this same issue with large genotyping data arrays often containing tiny integers and some degree of missingness in nearly 100% of raw datasets. Are there recommended workarounds now? I am thinking of constantly using Datasets instead of DataArrays with mask arrays to accompany every data array, but I'm not sure if that's the best interim solution. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Use masked arrays while preserving int 199188476 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1