issue_comments
1 row where issue = 197083082 and user = 1197350 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: updated_at (date)
issue 1
- Switch to shared Lock (SerializableLock if possible) for reading/writing · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 270193755 | https://github.com/pydata/xarray/pull/1179#issuecomment-270193755 | https://api.github.com/repos/pydata/xarray/issues/1179 | MDEyOklzc3VlQ29tbWVudDI3MDE5Mzc1NQ== | rabernat 1197350 | 2017-01-03T18:59:10Z | 2017-01-03T18:59:10Z | MEMBER |
I have found a fail case related to distributed: attempting to use Consider this example: ```python import dask.array as da from distributed import Client import xarray as xr def create_and_store_dataset(): shape = (10000, 1000) chunks = (1000, 1000) data = da.zeros(shape, chunks=chunks) ds = xr.DataArray(data).to_dataset() ds.to_netcdf('test_dataset.nc') print("Success!") create_and_store_dataset() client = Client() create_and_store_dataset() ``` The first call succeeds, while the second fails with When using the distributed client, I can successfully call |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Switch to shared Lock (SerializableLock if possible) for reading/writing 197083082 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1