home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where issue = 182667672 and user = 5572303 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • chunweiyuan · 2 ✖

issue 1

  • center=True for xarray.DataArray.rolling() · 2 ✖

author_association 1

  • CONTRIBUTOR 2
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
255246621 https://github.com/pydata/xarray/issues/1046#issuecomment-255246621 https://api.github.com/repos/pydata/xarray/issues/1046 MDEyOklzc3VlQ29tbWVudDI1NTI0NjYyMQ== chunweiyuan 5572303 2016-10-20T22:32:23Z 2016-10-20T22:32:23Z CONTRIBUTOR

Let me exhaust a few other ideas first. I'll definitely share my thoughts here first before making any commit. Thanks.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  center=True for xarray.DataArray.rolling() 182667672
253681067 https://github.com/pydata/xarray/issues/1046#issuecomment-253681067 https://api.github.com/repos/pydata/xarray/issues/1046 MDEyOklzc3VlQ29tbWVudDI1MzY4MTA2Nw== chunweiyuan 5572303 2016-10-14T00:53:54Z 2016-10-14T00:53:54Z CONTRIBUTOR

My opinion is that the nan has got to go. If we want to (1) maintain pandas-consistency and (2) use bottleneck without mucking it up, then I think we need to add some logic in either rolling.reduce() or rolling._center_result().

So here's my failed attempt:

``` def reverse_and_roll_1d(data, window_size, min_periods=1): """ Implements a concept to fix the end-of-array problem with xarray.core.rolling._center_shift(), by 1.) take slice of the back-end of the array 2.) flip it 3.) compute centered-window arithmetic 4.) flip it again 5.) replace back-end of default result with (4)

:param DataArray data: 1-D data array, with dim name 'x'.
:param int window_size: size of window.
"""
# first the default way to computing centered window
r = data.rolling(x=window_size, center=True, min_periods=min_periods)
avg = r.mean()
# now we need to fix the back-end of the array
rev_start = len(data.x) # an index
rev_end = len(data.x) - window_size - 1 \
                 if len(data.data) > window_size \
                else None  # another index
tail_slice = slice(rev_start, rev_end, -1) # back end of array, flipped
r2 = data[dict(x=tail_slice)].\
    rolling(x=window_size, center=True, min_periods=min_periods)
avg[dict(x=slice(-window_size+1, None))] = \
    r2.mean()[dict(x=slice(window_size-2, None, -1))] # replacement

return avg

```

This algorithm is consistently 8 times slower than pd.DataFrame.rolling(), for various 1d array sizes.

I'm open to ideas as well :)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  center=True for xarray.DataArray.rolling() 182667672

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 172.462ms · About: xarray-datasette