issue_comments
1 row where issue = 182638499 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
These facets timed out: author_association
issue 1
- Labeled repr · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 253345903 | https://github.com/pydata/xarray/issues/1044#issuecomment-253345903 | https://api.github.com/repos/pydata/xarray/issues/1044 | MDEyOklzc3VlQ29tbWVudDI1MzM0NTkwMw== | shoyer 1217238 | 2016-10-12T21:31:58Z | 2016-10-12T21:31:58Z | MEMBER | Agreed, I'm never been really happy with our use of the NumPy repr for >2 dimensions. It's quite hard to match up the labels. Something like this would be a meaningful improvement! I would encourage experimentation on this. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Labeled repr 182638499 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1