home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 171504099 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 3

  • NicWayand 1
  • shoyer 1
  • jhamman 1

author_association 2

  • MEMBER 2
  • NONE 1

issue 1

  • Multiple preprocessing functions in open_mfdataset? · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
240329789 https://github.com/pydata/xarray/issues/970#issuecomment-240329789 https://api.github.com/repos/pydata/xarray/issues/970 MDEyOklzc3VlQ29tbWVudDI0MDMyOTc4OQ== shoyer 1217238 2016-08-17T07:01:02Z 2016-08-17T07:01:02Z MEMBER

In @jhamman's solution, you could also just pass the function directly -- there's no need to use a lambda function in preprocess.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Multiple preprocessing functions in open_mfdataset? 171504099
240249797 https://github.com/pydata/xarray/issues/970#issuecomment-240249797 https://api.github.com/repos/pydata/xarray/issues/970 MDEyOklzc3VlQ29tbWVudDI0MDI0OTc5Nw== NicWayand 1117224 2016-08-16T21:46:43Z 2016-08-16T21:46:43Z NONE

Yes, that is a perfect solution, thank you!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Multiple preprocessing functions in open_mfdataset? 171504099
240233948 https://github.com/pydata/xarray/issues/970#issuecomment-240233948 https://api.github.com/repos/pydata/xarray/issues/970 MDEyOklzc3VlQ29tbWVudDI0MDIzMzk0OA== jhamman 2443309 2016-08-16T20:49:29Z 2016-08-16T20:49:29Z MEMBER

@NicWayand -

I would think that you could define your own function:

``` Python def preprocess(x): x.load()

x['time'] += 100

return x

```

Then you could use that in your lambda function:

Python ds = xr.open_mfdataset(files, concat_dim='time', engine='pynio', preprocess=lambda x: preprocess(x))

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Multiple preprocessing functions in open_mfdataset? 171504099

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 236.157ms · About: xarray-datasette