home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where issue = 171077425 and user = 5572303 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • chunweiyuan · 4 ✖

issue 1

  • sortby() or sort_index() method for Dataset and DataArray · 4 ✖

author_association 1

  • CONTRIBUTOR 4
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
298109506 https://github.com/pydata/xarray/issues/967#issuecomment-298109506 https://api.github.com/repos/pydata/xarray/issues/967 MDEyOklzc3VlQ29tbWVudDI5ODEwOTUwNg== chunweiyuan 5572303 2017-04-28T21:20:57Z 2017-04-28T21:20:57Z CONTRIBUTOR

Sounds good. As I'm writing the type-checking code I run into this question: Why would I have a xarray.core.dataset.DataVariables object as input? A DataVariables object could contain multiple DataArrays, which makes the interpretation a bit unclear. In my mind it should only be 1.) name(s) of existing index coords, or 2.) 1D DataArray(s) with dim in self.dims

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  sortby() or sort_index() method for Dataset and DataArray 171077425
297875052 https://github.com/pydata/xarray/issues/967#issuecomment-297875052 https://api.github.com/repos/pydata/xarray/issues/967 MDEyOklzc3VlQ29tbWVudDI5Nzg3NTA1Mg== chunweiyuan 5572303 2017-04-28T00:27:46Z 2017-04-28T00:27:46Z CONTRIBUTOR

What would the signature of sortby() be then? On our end we just want a more intuitive way to sort by dimension labels, so now I have sort_index(self, dims, ascending=True). sortby(), based on your description, seems like a separate method. Or any suggestion on how we can marry the two into something coherent?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  sortby() or sort_index() method for Dataset and DataArray 171077425
297868909 https://github.com/pydata/xarray/issues/967#issuecomment-297868909 https://api.github.com/repos/pydata/xarray/issues/967 MDEyOklzc3VlQ29tbWVudDI5Nzg2ODkwOQ== chunweiyuan 5572303 2017-04-27T23:43:12Z 2017-04-27T23:43:12Z CONTRIBUTOR

A couple of things:

1.) Upon a little thinking I believe sort_values() doesn't make much sense, so I'm only working on sort_index()'. 2.) the way I handle theinplacekwarg is by ``` if inplace: self = self.isel(**{d: self.indexes[d].argsort() if ascending else self.indexes[d].argsort()[::-1] for d in dimensions}) else: return self.isel(**{d: self.indexes[d].argsort() if ascending else self.indexes[d].argsort()[::-1] for d in dimensions}) ``` But when I run ``` ds.sort_index(dims=['x', 'y'], inplace=True) ``` nothing changes. If I put apdb.set_trace()` right below the self = self*** I can evaluate self and see that it's what I want it to be. But somehow that assignment is not realized to the higher level. Any quick pointer?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  sortby() or sort_index() method for Dataset and DataArray 171077425
296394094 https://github.com/pydata/xarray/issues/967#issuecomment-296394094 https://api.github.com/repos/pydata/xarray/issues/967 MDEyOklzc3VlQ29tbWVudDI5NjM5NDA5NA== chunweiyuan 5572303 2017-04-22T18:57:07Z 2017-04-22T18:57:07Z CONTRIBUTOR

On our end, we currently do the following when we need to sort by axis label (lat/lon in this case): da.reindex(indexers={'lat':sorted(da.coords['lat'].values), 'lon':sorted(da.coords['lon'].values)}) Upon first glance of the source code I think our approach goes down different code path than your .isel() approach. The most obvious difference, from a user's stand point, is probably that .reindex() returns a new object, whereas .isel() returns a view (typically). In Pandas, both sort_index() and sort_values() seem to return new objects.

We'd be happy to contribute to an xarray version of sort_index() and sort_values(). The first question is, which one would be the more robust and computationally efficient code path to take?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  sortby() or sort_index() method for Dataset and DataArray 171077425

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 13.499ms · About: xarray-datasette