issue_comments
1 row where issue = 169547144 and user = 4160723 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- List of projects using xarray · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
237844053 | https://github.com/pydata/xarray/issues/946#issuecomment-237844053 | https://api.github.com/repos/pydata/xarray/issues/946 | MDEyOklzc3VlQ29tbWVudDIzNzg0NDA1Mw== | benbovy 4160723 | 2016-08-05T13:00:55Z | 2016-08-05T13:00:55Z | MEMBER | I'm currently developing spyfit, which is based on xarray and which is for handling data related to FTIR spectroscopy of the atmosphere. I hope to release it soon. It may fall into the 2nd category I think. Depending on my position, I'd like to use xarray in other projects related either to atmospheric chemistry modeling or earth surface dynamics modeling! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
List of projects using xarray 169547144 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1