issue_comments
1 row where issue = 168272291 and user = 1197350 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- WIP: progress toward making groupby work with multiple arguments · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
236358965 | https://github.com/pydata/xarray/pull/924#issuecomment-236358965 | https://api.github.com/repos/pydata/xarray/issues/924 | MDEyOklzc3VlQ29tbWVudDIzNjM1ODk2NQ== | rabernat 1197350 | 2016-07-30T10:54:50Z | 2016-07-30T10:54:50Z | MEMBER | This looks like a really useful addition. It would be useful for me to have an example of how this is supposed to work. The tests are a starting point, but perhaps kind of trivial cases. If I create the following 2D dataset:
and then do
What should the coordinates of the output be? Every unique combination of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
WIP: progress toward making groupby work with multiple arguments 168272291 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1