issue_comments
1 row where issue = 1672288892 and user = 1197350 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Support opt_einsum in xr.dot · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1524332001 | https://github.com/pydata/xarray/issues/7764#issuecomment-1524332001 | https://api.github.com/repos/pydata/xarray/issues/7764 | IC_kwDOAMm_X85a23Xh | rabernat 1197350 | 2023-04-27T00:56:21Z | 2023-04-27T00:56:21Z | MEMBER | Is there ever a case where it would be preferable to use numpy if opt_einsum were installed? If not, I would propose that, like bottleneck, we just automatically use it if available. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support opt_einsum in xr.dot 1672288892 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1