issue_comments
2 rows where issue = 1657534038 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Extending the glossary · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1505014586 | https://github.com/pydata/xarray/pull/7732#issuecomment-1505014586 | https://api.github.com/repos/pydata/xarray/issues/7732 | IC_kwDOAMm_X85ZtLM6 | harshitha1201 97012127 | 2023-04-12T10:11:20Z | 2023-04-12T10:11:20Z | CONTRIBUTOR | @headtr1ck I have done the changes required, please review |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Extending the glossary 1657534038 | |
| 1500324581 | https://github.com/pydata/xarray/pull/7732#issuecomment-1500324581 | https://api.github.com/repos/pydata/xarray/issues/7732 | IC_kwDOAMm_X85ZbSLl | headtr1ck 43316012 | 2023-04-07T14:09:07Z | 2023-04-07T14:11:35Z | COLLABORATOR | Actually on top of examples maybe some simple text depictions could be useful? Something like this for aligning: Values: [ A A A ] + [ B B ] -> [ A B A B A ] Index:. [ 1 3 5 ] + [ 2 4 ] -> [ 1 2 3 4 5 ] But just throwing ideas around Edit: that's actually not what aligning does, haha. But you get the idea. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Extending the glossary 1657534038 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 2