issue_comments
2 rows where issue = 1647883619 and user = 60435591 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Recently introduced different behaviour of da.interp() when using floats vs DataArrays with new dim · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1491747796 | https://github.com/pydata/xarray/issues/7701#issuecomment-1491747796 | https://api.github.com/repos/pydata/xarray/issues/7701 | IC_kwDOAMm_X85Y6kPU | veenstrajelmer 60435591 | 2023-03-31T11:03:36Z | 2023-04-03T07:36:33Z | CONTRIBUTOR | @headtr1ck I just discovered that it is not per se a difference between floats/da, but it has to do with the creation of the new dimension ( |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Recently introduced different behaviour of da.interp() when using floats vs DataArrays with new dim 1647883619 | |
1491634350 | https://github.com/pydata/xarray/issues/7701#issuecomment-1491634350 | https://api.github.com/repos/pydata/xarray/issues/7701 | IC_kwDOAMm_X85Y6Iiu | veenstrajelmer 60435591 | 2023-03-31T09:36:33Z | 2023-03-31T10:06:51Z | CONTRIBUTOR | Thanks for your feedback, that is interesting and helpful. I have tested the older xarray version on a laptop with an older environment. I assumed the xarray version was the difference, but I guess there is something else that is causing it if you cannot reproduce it. Environment where it does work as expected
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.13 | packaged by conda-forge | (default, Mar 25 2022, 05:59:45) [MSC v.1929 64 bit (AMD64)]
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 142 Stepping 9, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: ('Dutch_Netherlands', '1252')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.6.0
pandas: 1.5.0
numpy: 1.23.3
scipy: 1.9.1
netCDF4: 1.6.1
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.2
cfgrib: None
iris: None
bottleneck: 1.3.5
dask: 2022.02.1
distributed: 2022.2.1
matplotlib: 3.6.0
cartopy: 0.21.0
seaborn: None
numbagg: None
fsspec: 2022.8.2
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.3.0
pip: 22.2.2
conda: None
pytest: None
IPython: 7.33.0
sphinx: 5.2.1
Since I see no related+recent scipy issues yet. Do you have a suggestion on how to proceed? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Recently introduced different behaviour of da.interp() when using floats vs DataArrays with new dim 1647883619 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1