issue_comments
1 row where issue = 157886730 and user = 743508 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- TypeError: invalid type promotion when reading multi-file dataset · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
222995827 | https://github.com/pydata/xarray/issues/864#issuecomment-222995827 | https://api.github.com/repos/pydata/xarray/issues/864 | MDEyOklzc3VlQ29tbWVudDIyMjk5NTgyNw== | mangecoeur 743508 | 2016-06-01T13:42:21Z | 2016-06-01T13:42:59Z | CONTRIBUTOR | On further investigation, it appears the problem is the dataset contains a mix of string and float data - the strings are redundant representations of the time stamp, therefore they don't appear in the index query. When I tried to convert to array, the numpy chokes on the mixed types. Explicitly selecting on the desired data variable solves this:
I think a clearer error message may be needed: when you do |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
TypeError: invalid type promotion when reading multi-file dataset 157886730 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1