issue_comments
3 rows where issue = 145243134 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Add drop=True option for where on Dataset and DataArray · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
204561434 | https://github.com/pydata/xarray/pull/815#issuecomment-204561434 | https://api.github.com/repos/pydata/xarray/issues/815 | MDEyOklzc3VlQ29tbWVudDIwNDU2MTQzNA== | max-sixty 5635139 | 2016-04-01T20:46:56Z | 2016-04-01T20:47:21Z | MEMBER | FWIW I'm not a fan of the |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop=True option for where on Dataset and DataArray 145243134 | |
204561404 | https://github.com/pydata/xarray/pull/815#issuecomment-204561404 | https://api.github.com/repos/pydata/xarray/issues/815 | MDEyOklzc3VlQ29tbWVudDIwNDU2MTQwNA== | max-sixty 5635139 | 2016-04-01T20:46:49Z | 2016-04-01T20:46:49Z | MEMBER | Right, I see. I think it's equivalent only to a pandas slice on ``` python In [71]: series = pd.Series(range(10)) In [72]: series[series>5] Out[72]: 6 6 7 7 8 8 9 9 dtype: int64 ...same as sel_whereIn [78]: df =pd.DataFrame(pd.np.arange(40).reshape(4,10)) In [79]: df[(df>11) & (df < 28)] Out[79]: 0 1 2 3 4 5 6 7 8 9 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 NaN NaN 3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ...same as where``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop=True option for where on Dataset and DataArray 145243134 | |
204525759 | https://github.com/pydata/xarray/pull/815#issuecomment-204525759 | https://api.github.com/repos/pydata/xarray/issues/815 | MDEyOklzc3VlQ29tbWVudDIwNDUyNTc1OQ== | max-sixty 5635139 | 2016-04-01T19:02:55Z | 2016-04-01T19:02:55Z | MEMBER | Forgive me if this is naive - is this equivalent to a pandas slice? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop=True option for where on Dataset and DataArray 145243134 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1