home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where issue = 145243134 and user = 5635139 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 1

  • max-sixty · 3 ✖

issue 1

  • Add drop=True option for where on Dataset and DataArray · 3 ✖

author_association 1

  • MEMBER 3
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
204561434 https://github.com/pydata/xarray/pull/815#issuecomment-204561434 https://api.github.com/repos/pydata/xarray/issues/815 MDEyOklzc3VlQ29tbWVudDIwNDU2MTQzNA== max-sixty 5635139 2016-04-01T20:46:56Z 2016-04-01T20:47:21Z MEMBER

FWIW I'm not a fan of the sel_where name, sel is otherwise associated with labels, and this takes bools. Have you thought about including this in where, with a kwarg such as drop?

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add drop=True option for where on Dataset and DataArray 145243134
204561404 https://github.com/pydata/xarray/pull/815#issuecomment-204561404 https://api.github.com/repos/pydata/xarray/issues/815 MDEyOklzc3VlQ29tbWVudDIwNDU2MTQwNA== max-sixty 5635139 2016-04-01T20:46:49Z 2016-04-01T20:46:49Z MEMBER

Right, I see. I think it's equivalent only to a pandas slice on Series, rather than a DataFrame.

``` python In [71]: series = pd.Series(range(10))

In [72]: series[series>5] Out[72]: 6 6 7 7 8 8 9 9 dtype: int64

...same as sel_where

In [78]: df =pd.DataFrame(pd.np.arange(40).reshape(4,10))

In [79]: df[(df>11) & (df < 28)] Out[79]: 0 1 2 3 4 5 6 7 8 9 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 NaN NaN 3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

...same as where

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add drop=True option for where on Dataset and DataArray 145243134
204525759 https://github.com/pydata/xarray/pull/815#issuecomment-204525759 https://api.github.com/repos/pydata/xarray/issues/815 MDEyOklzc3VlQ29tbWVudDIwNDUyNTc1OQ== max-sixty 5635139 2016-04-01T19:02:55Z 2016-04-01T19:02:55Z MEMBER

Forgive me if this is naive - is this equivalent to a pandas slice?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add drop=True option for where on Dataset and DataArray 145243134

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 121.122ms · About: xarray-datasette