issue_comments
1 row where issue = 1433998942 and user = 4160723 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- stack casts int32 dtype coordinate to int64 · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1313866757 | https://github.com/pydata/xarray/issues/7250#issuecomment-1313866757 | https://api.github.com/repos/pydata/xarray/issues/7250 | IC_kwDOAMm_X85OUAQF | benbovy 4160723 | 2022-11-14T14:45:39Z | 2022-11-14T14:45:39Z | MEMBER | That's a bug in this method: https://github.com/pydata/xarray/blob/6f9e33e94944f247a5c5c5962a865ff98a654b30/xarray/core/indexing.py#L1528-L1532 Xarray array wrappers for pandas indexes keep track of the original dtype and should restore it when converted into numpy arrays. Something like this should work for the same method:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
stack casts int32 dtype coordinate to int64 1433998942 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1